Research of a modular stabilizing control law for uncertain, nonholonomic mobile systems with actuators limitation has been investigated. Modular design allows the definition of a stabilizing control law for the kinematic model. The presence of uncertainties in the actuators parameters or in the vehicle dynamics has been treated both adding suitable components to the Lyapunov function and using parameters adaptation laws (e.g. adaptive control and backstepping techniques). Simulations are reported for the set point stabilization of a unicycle like vehicle showing the feasibility of the proposed approach. Torque limitations for a unicycle like vehicle has been investigated using backstepping techniques for the vehicle tracking problem. Simulations are reported.
Adaptive non Linear Control of Dynamic Mobile Robots with Parameters Uncertainty
BICCHI, ANTONIO
2006-01-01
Abstract
Research of a modular stabilizing control law for uncertain, nonholonomic mobile systems with actuators limitation has been investigated. Modular design allows the definition of a stabilizing control law for the kinematic model. The presence of uncertainties in the actuators parameters or in the vehicle dynamics has been treated both adding suitable components to the Lyapunov function and using parameters adaptation laws (e.g. adaptive control and backstepping techniques). Simulations are reported for the set point stabilization of a unicycle like vehicle showing the feasibility of the proposed approach. Torque limitations for a unicycle like vehicle has been investigated using backstepping techniques for the vehicle tracking problem. Simulations are reported.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.