We use high-resolution data from dayside passes of the Magnetospheric Multiscale (MMS) mission to create for the first time a comprehensive listing of encounters with the electron diffusion region (EDR), as evidenced by electron agyrotropy, ion jet reversals, and j • E′ > 0. We present an overview of these 32 EDR or near-EDR events, which demonstrate a wide variety of observed plasma behavior inside and surrounding the reconnection site. We analyze in detail three of the 21 new EDR encounters, which occurred within a 1-min-long interval on 23 November 2016. The three events, which resulted from a relatively low and oscillating magnetopause velocity, exhibited large electric fields (up to ~100 mV/m), crescent-shaped electron velocity phase space densities, large currents (≥2 μA/m2), and Ohmic heating of the plasma (~10 nW/m3). We include an Ohm's law analysis, in which we show that the divergence of the electron pressure term usually dominates the nonideal terms and is much more turbulent on the magnetosphere versus the magnetosheath side of the EDR.

Magnetospheric Multiscale Dayside Reconnection Electron Diffusion Region Events

Cozzani G.;
2018-01-01

Abstract

We use high-resolution data from dayside passes of the Magnetospheric Multiscale (MMS) mission to create for the first time a comprehensive listing of encounters with the electron diffusion region (EDR), as evidenced by electron agyrotropy, ion jet reversals, and j • E′ > 0. We present an overview of these 32 EDR or near-EDR events, which demonstrate a wide variety of observed plasma behavior inside and surrounding the reconnection site. We analyze in detail three of the 21 new EDR encounters, which occurred within a 1-min-long interval on 23 November 2016. The three events, which resulted from a relatively low and oscillating magnetopause velocity, exhibited large electric fields (up to ~100 mV/m), crescent-shaped electron velocity phase space densities, large currents (≥2 μA/m2), and Ohmic heating of the plasma (~10 nW/m3). We include an Ohm's law analysis, in which we show that the divergence of the electron pressure term usually dominates the nonideal terms and is much more turbulent on the magnetosphere versus the magnetosheath side of the EDR.
2018
Webster, J. M.; Burch, J. L.; Reiff, P. H.; Daou, A. G.; Genestreti, K. J.; Graham, D. B.; Torbert, R. B.; Ergun, R. E.; Sazykin, S. Y.; Marshall, A.; Allen, R. C.; Chen, L. -J.; Wang, S.; Phan, T. D.; Giles, B. L.; Moore, T. E.; Fuselier, S. A.; Cozzani, G.; Russell, C. T.; Eriksson, S.; Rager, A. C.; Broll, J. M.; Goodrich, K.; Wilder, F.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1007780
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 78
  • ???jsp.display-item.citation.isi??? 76
social impact