We investigate quantitative recurrence in systems having an infinite invariant measure. We extend the Ornstein–Weiss theorem for a general class of infinite systems estimating return time in decreasing sequences of cylinders. Then we restrict to a class of one-dimensional maps with indifferent fixed points and calculate quantitative recurrence in sequences of balls, obtaining that this is related to the behaviour of the map near the fixed points.

The recurrence time for ergodic systems with infinite invariant measures

GALATOLO, STEFANO;
2006-01-01

Abstract

We investigate quantitative recurrence in systems having an infinite invariant measure. We extend the Ornstein–Weiss theorem for a general class of infinite systems estimating return time in decreasing sequences of cylinders. Then we restrict to a class of one-dimensional maps with indifferent fixed points and calculate quantitative recurrence in sequences of balls, obtaining that this is related to the behaviour of the map near the fixed points.
2006
Galatolo, Stefano; KIM DONG, Han; Park, Kyewon
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/100824
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 10
social impact