We study the existence of sign changing solutions to the slightly subcritical problem −\Delta u = |u|^{p−1−ε}u in ω, u = 0 on ∂ω, on where ω is a smooth bounded domain in ℝ^N , N ≥ 3, p = (N + 2)/(N − 2) and ɛ > 0. We prove that, for ɛ small enough, there exist N pairs of solutions which change sign exactly once. Moreover, the nodal surface of these solutions intersects the boundary of ω, provided some suitable conditions are satisfied.
Autori interni: | ||
Autori: | BARTSCH T; MICHELETTI A.M.; PISTOIA A | |
Titolo: | On the existence and the profile of nodal solutions of elliptic equations involving critical growth | |
Anno del prodotto: | 2006 | |
Appare nelle tipologie: | 1.1 Articolo in rivista |
File in questo prodotto:
Non ci sono file associati a questo prodotto.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.