Thermal weed control technology plays an important role in managing weeds in synthetic herbicide-free systems, particularly in organic agriculture. The use of hot foam represents an evolution of the hot water weed control thermal method, modified by the addition of biodegradable foaming agents. The aim of this study was to test the weeding eect of dierent five hot foam doses, in two sites of dierent weed composition fields [i.e., Festuca arundinacea (Schreb.), Taraxacum ocinale (Weber) and Plantago lanceolata (L.)], by evaluating the devitalisation of weeds, their regrowth, the weed dry biomass at the end of the experiment and the temperature of hot foam as aected by dierent foam doses. The results showed that the eect of the hot foam doses diered with the dierent infested weed species experiments. In the Festuca arundinacea (Schreb.) infested field, all doses from 3.33 L m2 to 8.33 L m2 led to a 100% weed cover devitalisation and a lower weed dry biomass compared to the dose of 1.67 L m2, whereas the weed regrowth was similar when all doses were applied. In the Taraxacum ocinale (Weber) and Plantago lanceolata (L.) infested fields, doses from 5.00 L m2 to 8.33 L m2 in site I and from 3.33 L m2 to 8.33 L m2 in site II led to 100% of weed cover devitalisation. The highest doses of 6.67 L m2 and 8.33 L m2 led to a slower weed regrowth and a lower weed dry biomass compared to the other doses. The time needed for weeds to again cover 50%, after the 100% devitalisation, was, on average, one month when all doses were applied in the Festuca arundinacea (Schreb.) infested field, whereas in the Taraxacum ocinale (Weber) and Plantago lanceolata (L.) fields, this delay was estimated only when doses of 6.67 L m2 and 8.33 L m2 were used in site I and a dose of 8.33 L m2 in site II. Thus, in the Festuca arundinacea (Schreb.) field experiments hot foam doses from 3.33 L m2 to 8.33 L m2 were eective in controlling weeds, and the use of the lowest dose (i.e., 3.33 L m2) is recommended. However, for Taraxacum ocinale (Weber) and Plantago lanceolata (L.) the highest doses are recommended (i.e., 6.67 L m2 and 8.33 L m2), as these led to 100% weed devitalisation, slower regrowth, and lower weed dry biomass than other doses. A delay in the regrowth of weeds by 30 days can lead to the hypothesis that the future application of hot foam as a desiccant in no-till field bands, before the transplant of high-income vegetable crops, will provide a competitive advantage against weeds.
The use of different hot foam doses for weed control
Martelloni, L
;Frasconi, C;Sportelli, M;Fontanelli, M;Raffaelli, M;Peruzzi, A
2019-01-01
Abstract
Thermal weed control technology plays an important role in managing weeds in synthetic herbicide-free systems, particularly in organic agriculture. The use of hot foam represents an evolution of the hot water weed control thermal method, modified by the addition of biodegradable foaming agents. The aim of this study was to test the weeding eect of dierent five hot foam doses, in two sites of dierent weed composition fields [i.e., Festuca arundinacea (Schreb.), Taraxacum ocinale (Weber) and Plantago lanceolata (L.)], by evaluating the devitalisation of weeds, their regrowth, the weed dry biomass at the end of the experiment and the temperature of hot foam as aected by dierent foam doses. The results showed that the eect of the hot foam doses diered with the dierent infested weed species experiments. In the Festuca arundinacea (Schreb.) infested field, all doses from 3.33 L m2 to 8.33 L m2 led to a 100% weed cover devitalisation and a lower weed dry biomass compared to the dose of 1.67 L m2, whereas the weed regrowth was similar when all doses were applied. In the Taraxacum ocinale (Weber) and Plantago lanceolata (L.) infested fields, doses from 5.00 L m2 to 8.33 L m2 in site I and from 3.33 L m2 to 8.33 L m2 in site II led to 100% of weed cover devitalisation. The highest doses of 6.67 L m2 and 8.33 L m2 led to a slower weed regrowth and a lower weed dry biomass compared to the other doses. The time needed for weeds to again cover 50%, after the 100% devitalisation, was, on average, one month when all doses were applied in the Festuca arundinacea (Schreb.) infested field, whereas in the Taraxacum ocinale (Weber) and Plantago lanceolata (L.) fields, this delay was estimated only when doses of 6.67 L m2 and 8.33 L m2 were used in site I and a dose of 8.33 L m2 in site II. Thus, in the Festuca arundinacea (Schreb.) field experiments hot foam doses from 3.33 L m2 to 8.33 L m2 were eective in controlling weeds, and the use of the lowest dose (i.e., 3.33 L m2) is recommended. However, for Taraxacum ocinale (Weber) and Plantago lanceolata (L.) the highest doses are recommended (i.e., 6.67 L m2 and 8.33 L m2), as these led to 100% weed devitalisation, slower regrowth, and lower weed dry biomass than other doses. A delay in the regrowth of weeds by 30 days can lead to the hypothesis that the future application of hot foam as a desiccant in no-till field bands, before the transplant of high-income vegetable crops, will provide a competitive advantage against weeds.File | Dimensione | Formato | |
---|---|---|---|
agronomy-09-00490.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
4.21 MB
Formato
Adobe PDF
|
4.21 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.