Ubiquinone (UQ) is a polyprenylated lipid that is conserved from bacteria to humans and is crucial to cellular respiration. How the cell orchestrates the efficient synthesis of UQ, which involves the modification of extremely hydrophobic substrates by multiple sequential enzymes, remains an unresolved issue. Here, we demonstrate that seven Ubi proteins form the Ubi complex, a stable metabolon that catalyzes the last six reactions of the UQ biosynthetic pathway in Escherichia coli. The SCP2 domain of UbiJ forms an extended hydrophobic cavity that binds UQ intermediates inside the 1-MDa Ubi complex. We purify the Ubi complex from cytoplasmic extracts and demonstrate that UQ biosynthesis occurs in this fraction, challenging the current thinking of a membrane-associated biosynthetic process. Collectively, our results document a rare case of stable metabolon and highlight how the supramolecular organization of soluble enzymes allows the modification of hydrophobic substrates in a hydrophilic environment.

A Soluble Metabolon Synthesizes the Isoprenoid Lipid Ubiquinone

Ciccone L.;
2019-01-01

Abstract

Ubiquinone (UQ) is a polyprenylated lipid that is conserved from bacteria to humans and is crucial to cellular respiration. How the cell orchestrates the efficient synthesis of UQ, which involves the modification of extremely hydrophobic substrates by multiple sequential enzymes, remains an unresolved issue. Here, we demonstrate that seven Ubi proteins form the Ubi complex, a stable metabolon that catalyzes the last six reactions of the UQ biosynthetic pathway in Escherichia coli. The SCP2 domain of UbiJ forms an extended hydrophobic cavity that binds UQ intermediates inside the 1-MDa Ubi complex. We purify the Ubi complex from cytoplasmic extracts and demonstrate that UQ biosynthesis occurs in this fraction, challenging the current thinking of a membrane-associated biosynthetic process. Collectively, our results document a rare case of stable metabolon and highlight how the supramolecular organization of soluble enzymes allows the modification of hydrophobic substrates in a hydrophilic environment.
2019
Hajj Chehade, M.; Pelosi, L.; Fyfe, C. D.; Loiseau, L.; Rascalou, B.; Brugiere, S.; Kazemzadeh, K.; Vo, C. -D. -T.; Ciccone, L.; Aussel, L.; Coute, Y.; Fontecave, M.; Barras, F.; Lombard, M.; Pierrel, F.
File in questo prodotto:
File Dimensione Formato  
CellChemicalBiology2019.pdf

solo utenti autorizzati

Descrizione: Articolo Principale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 3.6 MB
Formato Adobe PDF
3.6 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1010941
Citazioni
  • ???jsp.display-item.citation.pmc??? 12
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 32
social impact