The neurotoxin 1-methyl,4-phenyl-1,2,3,6-tetrahydropiridine (MPTP) is widely used to produce experimental parkinsonism in rodents and primates. Among different administration protocols, continuous or chronic exposure to small amounts of MPTP is reported to better mimic cell pathology reminiscent of Parkinson's disease (PD). Catecholamine neurons are the most sensitive to MPTP neurotoxicity; however, recent studies have found that MPTP alters the fine anatomy of the spinal cord including motor neurons, thus overlapping again with the spinal cord involvement documented in PD. In the present study, we demonstrate that chronic exposure to low amounts of MPTP (10 mg/kg daily, × 21 days) significantly reduces motor neurons in the ventral lumbar spinal cord while increasing α-synuclein immune-staining within the ventral horn. Spinal cord involvement in MPTP-treated mice extends to Calbindin D28 KDa immune-reactive neurons other than motor neurons within lamina VII. These results were obtained in the absence of significant reduction of dopaminergic cell bodies in the Substantia Nigra pars compacta, while a slight decrease was documented in striatal tyrosine hydroxylase immune-staining. Thus, the present study highlights neuropathological similarities between dopaminergic neurons and spinal motor neurons and supports the pathological involvement of spinal cord in PD and experimental MPTP-induced parkinsonism. Remarkably, the toxic threshold for motor neurons appears to be lower compared with nigral dopaminergic neurons following a chronic pattern of MPTP intoxication. This sharply contrasts with previous studies showing that MPTP intoxication produces comparable neuronal loss within spinal cord and Substantia Nigra.

Motor Neurons Pathology After Chronic Exposure to MPTP in Mice

Ferrucci, Michela;Ryskalin, Larisa;Fornai, Francesco
Ultimo
2020-01-01

Abstract

The neurotoxin 1-methyl,4-phenyl-1,2,3,6-tetrahydropiridine (MPTP) is widely used to produce experimental parkinsonism in rodents and primates. Among different administration protocols, continuous or chronic exposure to small amounts of MPTP is reported to better mimic cell pathology reminiscent of Parkinson's disease (PD). Catecholamine neurons are the most sensitive to MPTP neurotoxicity; however, recent studies have found that MPTP alters the fine anatomy of the spinal cord including motor neurons, thus overlapping again with the spinal cord involvement documented in PD. In the present study, we demonstrate that chronic exposure to low amounts of MPTP (10 mg/kg daily, × 21 days) significantly reduces motor neurons in the ventral lumbar spinal cord while increasing α-synuclein immune-staining within the ventral horn. Spinal cord involvement in MPTP-treated mice extends to Calbindin D28 KDa immune-reactive neurons other than motor neurons within lamina VII. These results were obtained in the absence of significant reduction of dopaminergic cell bodies in the Substantia Nigra pars compacta, while a slight decrease was documented in striatal tyrosine hydroxylase immune-staining. Thus, the present study highlights neuropathological similarities between dopaminergic neurons and spinal motor neurons and supports the pathological involvement of spinal cord in PD and experimental MPTP-induced parkinsonism. Remarkably, the toxic threshold for motor neurons appears to be lower compared with nigral dopaminergic neurons following a chronic pattern of MPTP intoxication. This sharply contrasts with previous studies showing that MPTP intoxication produces comparable neuronal loss within spinal cord and Substantia Nigra.
2020
Vivacqua, Giorgio; Biagioni, Francesca; Busceti, Carla L; Ferrucci, Michela; Madonna, Michele; Ryskalin, Larisa; Yu, Shun; D'Este, Loredana; Fornai, Francesco
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1013740
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 4
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 11
social impact