We investigated the interactions between inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) pathways in head and neck squamous cell carcinomas (HNSCCs) and in two carcinoma cell lines. HNSCCs showed an up-regulation of both pathways which were strongly correlated with each other (p=0.02) and with tumor vascularization (p=0.0001 and p=0.008, respectively). In carcinoma cells, Escherichia coli lipopolysaccharide (LPS) and EGF treatment up-regulated both pathways. NOS inhibitor N(G)-monomethyl-L-arginine methyl ester (L-NAME) inhibited this up-regulation. LPS or EGF induced iNOS expression that was not altered by NOS or COX-2 inhibitors. Conversely, LPS or EGF promoted COX-2 expression that was decreased by L-NAME. The NO donor S-nitroso-acetyl-penicillamine (SNAP) up-regulated COX-2 pathway and this effect was reduced by the guanylate cyclase inhibitor methylene blue. Thus, in squamous carcinoma cells, NO increases the activity of COX-2 pathway and this effect is probably mediated by endocellular cGMP level, with potential implications on tumor growth, angiogenesis, and therapy.

Correlation between nitric oxide synthase and cyclooxygenase-2 pathways in head and neck squamous cell carcinoma

FRANCHI, ALESSANDRO;V. FABBRONI
2002-01-01

Abstract

We investigated the interactions between inducible nitric oxide synthase (iNOS) and cyclooxygenase-2 (COX-2) pathways in head and neck squamous cell carcinomas (HNSCCs) and in two carcinoma cell lines. HNSCCs showed an up-regulation of both pathways which were strongly correlated with each other (p=0.02) and with tumor vascularization (p=0.0001 and p=0.008, respectively). In carcinoma cells, Escherichia coli lipopolysaccharide (LPS) and EGF treatment up-regulated both pathways. NOS inhibitor N(G)-monomethyl-L-arginine methyl ester (L-NAME) inhibited this up-regulation. LPS or EGF induced iNOS expression that was not altered by NOS or COX-2 inhibitors. Conversely, LPS or EGF promoted COX-2 expression that was decreased by L-NAME. The NO donor S-nitroso-acetyl-penicillamine (SNAP) up-regulated COX-2 pathway and this effect was reduced by the guanylate cyclase inhibitor methylene blue. Thus, in squamous carcinoma cells, NO increases the activity of COX-2 pathway and this effect is probably mediated by endocellular cGMP level, with potential implications on tumor growth, angiogenesis, and therapy.
2002
Franchi, Alessandro; Gallo, Oreste; I., Sardi; Magnelli, Lucia; Boddi, Vieri; V., Fabbroni
File in questo prodotto:
File Dimensione Formato  
Correlation between nitric oxide and cyclooxygenase-2 pathways in head and neck squamous cell carcinomas.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 163.99 kB
Formato Adobe PDF
163.99 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1014274
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 37
  • ???jsp.display-item.citation.isi??? 37
social impact