The ability of yeast to adhere to biotic and abiotic surfaces represents an essential trait during the early stages of infection. Agglutinin-like sequence (Als) cell-wall proteins play a key role in adhesion of Candida species. Candida parapsilosis genome encompasses 5 ALS members, of which only the role of CPAR2_404800 has been elucidated. The present project was aimed at investigating the contribution of C. parapsilosis Als proteins by generating edited strains lacking functional Als proteins. CPAR2_404770 and CPAR2_404780, further indicated as CpALS4770 and CpALS4780, were selected for the generation of single and double edited strains using an episomal CRISPR/Cas9 technology. Phenotypic characterization of mutant strains revealed that editing of both genes had no impact on the in vitro growth of C. parapsilosis or on morphogenesis. Notably, CpALS4770-edited strain showed a reduction of biofilm formation and adhesive properties to human buccal cells (HBECs). Conversely, single CpALS4780-edited strain did not show any difference compared to the wild-type strain in all the assays performed, while the double CpALS4770-CpALS4780 mutant revealed an increased ability to produce biofilm, a hyper-adhesive phenotype to HBECs, and a marked tendency to form cellular aggregates. Murine vaginal infection experiments indicated a significant reduction in CFUs recovered from BALC/c mice infected with single and double edited strains, compared to those infected with the wild-type strain. These finding clearly indicate that CpAls4770 plays a role in adhesion to biotic and abiotic surfaces, while both CpALS4770 and CpALS4780 genes are required for C. parapsilosis ability to colonize and persist in the vaginal mucosa.

CpALS4770 and CpALS4780 contribution to the virulence of Candida parapsilosis

Di Luca M.;Rizzato C.;Lupetti A.;Bottai D.;Tavanti A.
Ultimo
2020

Abstract

The ability of yeast to adhere to biotic and abiotic surfaces represents an essential trait during the early stages of infection. Agglutinin-like sequence (Als) cell-wall proteins play a key role in adhesion of Candida species. Candida parapsilosis genome encompasses 5 ALS members, of which only the role of CPAR2_404800 has been elucidated. The present project was aimed at investigating the contribution of C. parapsilosis Als proteins by generating edited strains lacking functional Als proteins. CPAR2_404770 and CPAR2_404780, further indicated as CpALS4770 and CpALS4780, were selected for the generation of single and double edited strains using an episomal CRISPR/Cas9 technology. Phenotypic characterization of mutant strains revealed that editing of both genes had no impact on the in vitro growth of C. parapsilosis or on morphogenesis. Notably, CpALS4770-edited strain showed a reduction of biofilm formation and adhesive properties to human buccal cells (HBECs). Conversely, single CpALS4780-edited strain did not show any difference compared to the wild-type strain in all the assays performed, while the double CpALS4770-CpALS4780 mutant revealed an increased ability to produce biofilm, a hyper-adhesive phenotype to HBECs, and a marked tendency to form cellular aggregates. Murine vaginal infection experiments indicated a significant reduction in CFUs recovered from BALC/c mice infected with single and double edited strains, compared to those infected with the wild-type strain. These finding clearly indicate that CpAls4770 plays a role in adhesion to biotic and abiotic surfaces, while both CpALS4770 and CpALS4780 genes are required for C. parapsilosis ability to colonize and persist in the vaginal mucosa.
Zoppo, M.; Di Luca, M.; Franco, M.; Rizzato, C.; Lupetti, A.; Stringaro, A.; De Bernardis, F.; Schaudinn, C.; Barrasa, M. I.; Bottai, D.; Vyas, V. K.; Tavanti, A.
File in questo prodotto:
File Dimensione Formato  
MICRES_2019_934_post print.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 836.07 kB
Formato Adobe PDF
836.07 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1014814
Citazioni
  • ???jsp.display-item.citation.pmc??? 7
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact