A magnetic bag is an Abelian approximation to a large number of coincident SU(2) Bogomol'nyi-Prasad-Sommerfield monopoles. In this paper we consider magnetic bags in hyperbolic space and derive their Nahm transform from the large-charge limit of the discrete Nahm equation for hyperbolic monopoles. An advantage of studying magnetic bags in hyperbolic space, rather than Euclidean space, is that a range of exact charge N hyperbolic monopoles can be constructed, for arbitrarily large values of N, and compared with the magnetic bag approximation. We show that a particular magnetic bag (the magnetic disc) provides a good description of the axially symmetric N-monopole. However, an Abelian magnetic bag is not a good approximation to a roughly spherical N-monopole that has more than N zeros of the Higgs field. We introduce an extension of the magnetic bag that does provide a good approximation to such monopoles and involves a spherical non-Abelian interior for the bag, in addition to the conventional Abelian exterior.
Autori interni: | |
Autori: | Bolognesi, Stefano; Harland, Derek; Sutcliffe, Paul |
Titolo: | Magnetic bags in hyperbolic space |
Anno del prodotto: | 2015 |
Abstract: | A magnetic bag is an Abelian approximation to a large number of coincident SU(2) Bogomol'nyi-Prasad-Sommerfield monopoles. In this paper we consider magnetic bags in hyperbolic space and derive their Nahm transform from the large-charge limit of the discrete Nahm equation for hyperbolic monopoles. An advantage of studying magnetic bags in hyperbolic space, rather than Euclidean space, is that a range of exact charge N hyperbolic monopoles can be constructed, for arbitrarily large values of N, and compared with the magnetic bag approximation. We show that a particular magnetic bag (the magnetic disc) provides a good description of the axially symmetric N-monopole. However, an Abelian magnetic bag is not a good approximation to a roughly spherical N-monopole that has more than N zeros of the Higgs field. We introduce an extension of the magnetic bag that does provide a good approximation to such monopoles and involves a spherical non-Abelian interior for the bag, in addition to the conventional Abelian exterior. |
Digital Object Identifier (DOI): | 10.1103/PhysRevD.92.025052 |
Appare nelle tipologie: | 1.1 Articolo in rivista |