It is well known that a k-dimensional smooth surface in a Euclidean space cannot be tangent to a non-involutive distribution of k-dimensional planes. In this paper we discuss the extension of this statement to weaker notions of surfaces, namely integral and normal currents. We find out that integral currents behave to this regard exactly as smooth surfaces, while the behaviour of normal currents is rather multifaceted. This issue is strictly related to a geometric property of the boundary of currents, which is also discussed in details.

On the geometric structure of currents tangent to smooth distributions

Giovanni Alberti
;
Evgeny Stepanov
2022-01-01

Abstract

It is well known that a k-dimensional smooth surface in a Euclidean space cannot be tangent to a non-involutive distribution of k-dimensional planes. In this paper we discuss the extension of this statement to weaker notions of surfaces, namely integral and normal currents. We find out that integral currents behave to this regard exactly as smooth surfaces, while the behaviour of normal currents is rather multifaceted. This issue is strictly related to a geometric property of the boundary of currents, which is also discussed in details.
2022
Alberti, Giovanni; Massaccesi, Annalisa; Stepanov, Evgeny
File in questo prodotto:
File Dimensione Formato  
ams-frobenius2-v8.4-final.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 422.56 kB
Formato Adobe PDF
422.56 kB Adobe PDF Visualizza/Apri
ams-frobenius2-published.pdf

non disponibili

Descrizione: versione pubblicata dalla rivista
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 424.89 kB
Formato Adobe PDF
424.89 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1016801
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 3
social impact