We consider Canonical Gibbsian ensembles of Euler point vortices on the 2-dimensional torus or in a bounded domain of $R^2$. We prove that under the Central Limit scaling of vortices intensities, and provided that the system has zero global space average in the bounded domain case (neutrality condition), the ensemble converges to the so-called Energy-Enstrophy Gaussian random distributions. This can be interpreted as describing Gaussian fluctuations around the mean field limit of vortices ensembles of cite{clmp92,KieWan2012}, and it generalises the result on fluctuations of cite{bodineau}. The main argument consists in proving convergence of partition functions of vortices and Gaussian distributions.
A Central Limit Theorem for Gibbsian Invariant Measures of 2D Euler Equations
Marco Romito;Francesco Grotto
2020-01-01
Abstract
We consider Canonical Gibbsian ensembles of Euler point vortices on the 2-dimensional torus or in a bounded domain of $R^2$. We prove that under the Central Limit scaling of vortices intensities, and provided that the system has zero global space average in the bounded domain case (neutrality condition), the ensemble converges to the so-called Energy-Enstrophy Gaussian random distributions. This can be interpreted as describing Gaussian fluctuations around the mean field limit of vortices ensembles of cite{clmp92,KieWan2012}, and it generalises the result on fluctuations of cite{bodineau}. The main argument consists in proving convergence of partition functions of vortices and Gaussian distributions.File | Dimensione | Formato | |
---|---|---|---|
article.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
431.21 kB
Formato
Adobe PDF
|
431.21 kB | Adobe PDF | Visualizza/Apri |
s00220-020-03724-1 (1).pdf
non disponibili
Descrizione: versione editoriale
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
456.56 kB
Formato
Adobe PDF
|
456.56 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.