The classical, wound-field, synchronous generator is currently enjoying a revamped interest in its design and development, partly due to the ever-increasing requirements in terms of power quality standards, efficiency and power density and partly due to advances in materials and manufacturing techniques. Also, the significant improvements in the computational resources allow the utilization of modern design techniques and tools. Apart from the design of the machine itself, another area of interest is the system-level optimization. The proposed project is aimed at renewing the power electronics and the control logic in power generating sets featuring the popular brushless configuration. An industrial small-to-medium size power generating set is taken as case study. The considered platform is first analyzed at system-level, by modelling in detail all of the components comprised in it. Then, focus is given to the automatic voltage regulator. A faster, more flexible and more efficient system is proposed, based on a 4-quadrant DC-to-DC converter which permits to improve the dynamic response of the excitation system.
An Improved Automatic Voltage Regulator for Self-Excited, Small-to-Medium Power Generating Sets equipped with Brushless Excitation Systems
P. BolognesiSecondo
;
2019-01-01
Abstract
The classical, wound-field, synchronous generator is currently enjoying a revamped interest in its design and development, partly due to the ever-increasing requirements in terms of power quality standards, efficiency and power density and partly due to advances in materials and manufacturing techniques. Also, the significant improvements in the computational resources allow the utilization of modern design techniques and tools. Apart from the design of the machine itself, another area of interest is the system-level optimization. The proposed project is aimed at renewing the power electronics and the control logic in power generating sets featuring the popular brushless configuration. An industrial small-to-medium size power generating set is taken as case study. The considered platform is first analyzed at system-level, by modelling in detail all of the components comprised in it. Then, focus is given to the automatic voltage regulator. A faster, more flexible and more efficient system is proposed, based on a 4-quadrant DC-to-DC converter which permits to improve the dynamic response of the excitation system.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.