A wickless passive two phase closed loop heat transfer device especially designed for a future implementation on the heat transfer host module of the International Space Station is tested in relevant environment on board a parabolic flight. The tube internal diameter (3 mm) is larger than the static capillary threshold evaluated in normal gravity for this working fluid (FC-72), leading the device to work as a loop thermosyphon on ground and in hyper-gravity conditions, and as a Pulsating Heat Pipe when micro-gravity occurs. Novel start up tests, where the heat load has been provided after the occurrence of microgravity, show that the 20 s microgravity period is enough for the device activation and, most important, that the device activation is purely thermally induced and not affected by the previous acceleration field. Two miniaturized pressure transducers and direct fluid temperature measurement via two micro-thermocouples, allow to provide a detailed insight on the fluid local thermodynamics states both in the evaporator and in the condenser zone during microgravity. It is shown that the two-phase fluid close to the evaporator and the condenser is subjected to several degrees (up to 5 K) of superheating or subcooling. The level of subcooling seems to increase with the heat input level both in terms of temperature difference and in terms of percentage time with respect to the whole microgravity period.
Start-up in microgravity and local thermodynamic states of a hybrid loop thermosyphon/pulsating heat pipe
Mameli M.;Catarsi A.;Di Marco P.;Filippeschi S.
2019-01-01
Abstract
A wickless passive two phase closed loop heat transfer device especially designed for a future implementation on the heat transfer host module of the International Space Station is tested in relevant environment on board a parabolic flight. The tube internal diameter (3 mm) is larger than the static capillary threshold evaluated in normal gravity for this working fluid (FC-72), leading the device to work as a loop thermosyphon on ground and in hyper-gravity conditions, and as a Pulsating Heat Pipe when micro-gravity occurs. Novel start up tests, where the heat load has been provided after the occurrence of microgravity, show that the 20 s microgravity period is enough for the device activation and, most important, that the device activation is purely thermally induced and not affected by the previous acceleration field. Two miniaturized pressure transducers and direct fluid temperature measurement via two micro-thermocouples, allow to provide a detailed insight on the fluid local thermodynamics states both in the evaporator and in the condenser zone during microgravity. It is shown that the two-phase fluid close to the evaporator and the condenser is subjected to several degrees (up to 5 K) of superheating or subcooling. The level of subcooling seems to increase with the heat input level both in terms of temperature difference and in terms of percentage time with respect to the whole microgravity period.File | Dimensione | Formato | |
---|---|---|---|
Mameli et al. ATE 2019.pdf
solo utenti autorizzati
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
3.11 MB
Formato
Adobe PDF
|
3.11 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.