The endoplasmic reticulum (ER) is the cellular site of polypeptide folding and modification. When these processes are hampered, an unfolded protein response (UPR) is activated. If the damage is too broad, the mammalian UPR launches the apoptotic program. As a consequence, mobilization of ER calcium stores sensitizes mitochondria to direct proapoptotic stimuli. We make use of a mouse Apaf1-deficient cell system of proneural origin to understand the roles played in this context by the apoptosome, the most studied apoptotic machinery along the mitochondrial pathway of death. We show here that in the absence of the apoptosome ER stress induces cytochrome c release from the mitochondria but that apoptosis cannot occur. Under these circumstances, Grp78/BiP and GADD153/CHOP, both hallmarks of UPR, are canonically up-regulated, and calcium is properly released from ER stores. We also demonstrate that caspase 12, a protease until now believed to play a central role in the initiation of ER stress-induced cell death in the mouse system, is dispensable for the mitochondrial pathway of death to take place.

ER stress induces apoptosis by an apoptosome-dependent but caspase 12-independent mechanism

Ferraro E;
2006-01-01

Abstract

The endoplasmic reticulum (ER) is the cellular site of polypeptide folding and modification. When these processes are hampered, an unfolded protein response (UPR) is activated. If the damage is too broad, the mammalian UPR launches the apoptotic program. As a consequence, mobilization of ER calcium stores sensitizes mitochondria to direct proapoptotic stimuli. We make use of a mouse Apaf1-deficient cell system of proneural origin to understand the roles played in this context by the apoptosome, the most studied apoptotic machinery along the mitochondrial pathway of death. We show here that in the absence of the apoptosome ER stress induces cytochrome c release from the mitochondria but that apoptosis cannot occur. Under these circumstances, Grp78/BiP and GADD153/CHOP, both hallmarks of UPR, are canonically up-regulated, and calcium is properly released from ER stores. We also demonstrate that caspase 12, a protease until now believed to play a central role in the initiation of ER stress-induced cell death in the mouse system, is dispensable for the mitochondrial pathway of death to take place.
2006
Di Sano, F; Ferraro, E; Tufi, R; Achsel, T; Piacentini, M; Cecconi, F.
File in questo prodotto:
File Dimensione Formato  
Di Sano et al.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 723.46 kB
Formato Adobe PDF
723.46 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1020518
Citazioni
  • ???jsp.display-item.citation.pmc??? 36
  • Scopus 115
  • ???jsp.display-item.citation.isi??? 110
social impact