Purpose: To assess the relationship between regional myocardial perfusion and sympathetic innervation parameters at myocardial scintigraphy and intra-cavitary electrophysiological data in patients with ventricular arrhythmias (VA) submitted to invasive electrophysiological study and ablation procedure. Methods: Sixteen subjects underwent invasive electrophysiological study with electroanatomical mapping (EAM) followed by trans-catheter ablations of VA. Before ablation all patients were studied with a combined evaluation of regional myocardial perfusion and sympathetic innervation by means of tomographic 99mTc-tetrofosmin and 123I- metaiodobenzylguanidine cadmium-zinc-telluride (CZT) scintigraphies, respectively. Off-line spatial co-registration of CZT perfusion and innervation data with the three-dimensional EAM reconstruction was performed in every patient. Results: CZT revealed the presence of myocardial scar in 55 (20 %) segments. Of the viable myocardial segments, 131 (60 %) presented a preserved adrenergic innervation, while 86 (40 %) showed a significantly depressed innervation (i.e. innervation/perfusion mismatch). On EAM, the invasively measured intra-cavitary voltage was significantly lower in scarred segments than in viable ones (1.7 ± 1.5 mV vs. 4.0 ± 2.2 mV, P < 0.001). Interestingly, among the viable segments, those showing an innervation/perfusion mismatch presented a significantly lower intra-cavitary voltage than those with preserved innervation (1.9 ± 2.5 mV vs. 4.7 ± 2.3 mV, P < 0.001). Intra-cardiac ablation was performed in 63 (23 %) segments. On multivariate analysis, after correction for scar burden, the segments showing an innervation/perfusion mismatch remained the most frequent ablation targets (OR 5.6, 95 % CI 1.5–20.8; P = 0.009). Conclusions: In patients with VA, intra-cavitary electrical abnormalities frequently originate at the level of viable myocardial segments with depressed sympathetic innervation that frequently represents the ultimate ablation target.

Relationships between cardiac innervation/perfusion imbalance and ventricular arrhythmias: impact on invasive electrophysiological parameters and ablation procedures

Liga R.;
2016-01-01

Abstract

Purpose: To assess the relationship between regional myocardial perfusion and sympathetic innervation parameters at myocardial scintigraphy and intra-cavitary electrophysiological data in patients with ventricular arrhythmias (VA) submitted to invasive electrophysiological study and ablation procedure. Methods: Sixteen subjects underwent invasive electrophysiological study with electroanatomical mapping (EAM) followed by trans-catheter ablations of VA. Before ablation all patients were studied with a combined evaluation of regional myocardial perfusion and sympathetic innervation by means of tomographic 99mTc-tetrofosmin and 123I- metaiodobenzylguanidine cadmium-zinc-telluride (CZT) scintigraphies, respectively. Off-line spatial co-registration of CZT perfusion and innervation data with the three-dimensional EAM reconstruction was performed in every patient. Results: CZT revealed the presence of myocardial scar in 55 (20 %) segments. Of the viable myocardial segments, 131 (60 %) presented a preserved adrenergic innervation, while 86 (40 %) showed a significantly depressed innervation (i.e. innervation/perfusion mismatch). On EAM, the invasively measured intra-cavitary voltage was significantly lower in scarred segments than in viable ones (1.7 ± 1.5 mV vs. 4.0 ± 2.2 mV, P < 0.001). Interestingly, among the viable segments, those showing an innervation/perfusion mismatch presented a significantly lower intra-cavitary voltage than those with preserved innervation (1.9 ± 2.5 mV vs. 4.7 ± 2.3 mV, P < 0.001). Intra-cardiac ablation was performed in 63 (23 %) segments. On multivariate analysis, after correction for scar burden, the segments showing an innervation/perfusion mismatch remained the most frequent ablation targets (OR 5.6, 95 % CI 1.5–20.8; P = 0.009). Conclusions: In patients with VA, intra-cavitary electrical abnormalities frequently originate at the level of viable myocardial segments with depressed sympathetic innervation that frequently represents the ultimate ablation target.
2016
Gimelli, A.; Menichetti, F.; Soldati, E.; Liga, R.; Vannozzi, A.; Marzullo, P.; Bongiorni, M. G.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1021636
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 3
  • Scopus 19
  • ???jsp.display-item.citation.isi??? 16
social impact