This paper proposes and investigates an analytical method for assessing the risk of potential irreversible demagnetization in the permanent magnets (PMs) of electrical machines equipped with n -stages, Halbach arrays. The higher risk of demagnetization, synonymous with Halbach arrays, imposes that the method be both load and temperature dependent. In fact, the proposed method studies the magnetic field distribution in the air gap and PM region, for various operating temperatures and expresses these fields as analytical expressions for the no-load and peak-load conditions. The model can cater for Halbach arrays with up to n stages, thus making it a versatile tool that can be utilized for various Halbach configurations. Finite-element analysis is used to validate the method. The analytical tool is then used for the design and analysis of a high torque density, outer rotor, traction motor. The motor is for an aerospace application and its operating duty cycle imposes very high, short-time, peak-load conditions at elevated temperatures, posing an elevated risk of irreversible PM demagnetization. The model is used to investigate various Halbach configurations for this application, in order to reduce the demagnetization risk and also to improve the general performance of the machine. The analytical method thus provides a computationally efficient tool that can be used to predict and prevent demagnetization in Halbach-equipped electrical machines operating in harsh environments such as the aerospace sector.

Demagnetization Analysis for Halbach Array Configurations in Electrical Machines

Papini L.;
2015-01-01

Abstract

This paper proposes and investigates an analytical method for assessing the risk of potential irreversible demagnetization in the permanent magnets (PMs) of electrical machines equipped with n -stages, Halbach arrays. The higher risk of demagnetization, synonymous with Halbach arrays, imposes that the method be both load and temperature dependent. In fact, the proposed method studies the magnetic field distribution in the air gap and PM region, for various operating temperatures and expresses these fields as analytical expressions for the no-load and peak-load conditions. The model can cater for Halbach arrays with up to n stages, thus making it a versatile tool that can be utilized for various Halbach configurations. Finite-element analysis is used to validate the method. The analytical tool is then used for the design and analysis of a high torque density, outer rotor, traction motor. The motor is for an aerospace application and its operating duty cycle imposes very high, short-time, peak-load conditions at elevated temperatures, posing an elevated risk of irreversible PM demagnetization. The model is used to investigate various Halbach configurations for this application, in order to reduce the demagnetization risk and also to improve the general performance of the machine. The analytical method thus provides a computationally efficient tool that can be used to predict and prevent demagnetization in Halbach-equipped electrical machines operating in harsh environments such as the aerospace sector.
2015
Galea, M.; Papini, L.; Zhang, H.; Gerada, C.; Hamiti, T.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1021989
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 58
  • ???jsp.display-item.citation.isi??? 25
social impact