Spinodal decomposition of deeply quenched mixtures is studied experimentally, with particular emphasis on the domain growth rate during the late stage of coarsening. We provide some experimental evidence that at high Péclet number, the process is isotropic and the domain growth is linear in time, even at finite quenching rates. In fact, the quenching rate appears to influence the magnitude of the growth rate, but not its scaling law. In the second part of the work we analyze the effect of viscosity on the growth rate. As predicted by the diffuse interface model, we do not find any effect of viscosity on the growth rate of the nucleating drops, although, as expected, the viscosity of the continuous phase does influence the settling speed and thus the total separation time.
Effects of Quenching Rate and Viscosity on Spinodal Decomposition
MAURI, ROBERTO;
2006-01-01
Abstract
Spinodal decomposition of deeply quenched mixtures is studied experimentally, with particular emphasis on the domain growth rate during the late stage of coarsening. We provide some experimental evidence that at high Péclet number, the process is isotropic and the domain growth is linear in time, even at finite quenching rates. In fact, the quenching rate appears to influence the magnitude of the growth rate, but not its scaling law. In the second part of the work we analyze the effect of viscosity on the growth rate. As predicted by the diffuse interface model, we do not find any effect of viscosity on the growth rate of the nucleating drops, although, as expected, the viscosity of the continuous phase does influence the settling speed and thus the total separation time.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.