We prove an Iwasawa Main Conjecture for the class group of the p-cyclotomic extension F of the function field Fq(θ) (p is a prime of Fq[θ]), showing that its Fitting ideal is generated by a Stickelberger element. We use this and a link between the Stickelberger element and a p-adic L-function to prove a close analog of the Ferrero–Washington Theorem for F and to provide information on the p-adic valuations of the Bernoulli-Goss numbers β(j) (i.e., on the values of the Carlitz-Goss ζ-function at negative integers).
Iwasawa main conjecture for the Carlitz cyclotomic extension and applications
Bandini A.;
2020-01-01
Abstract
We prove an Iwasawa Main Conjecture for the class group of the p-cyclotomic extension F of the function field Fq(θ) (p is a prime of Fq[θ]), showing that its Fitting ideal is generated by a Stickelberger element. We use this and a link between the Stickelberger element and a p-adic L-function to prove a close analog of the Ferrero–Washington Theorem for F and to provide information on the p-adic valuations of the Bernoulli-Goss numbers β(j) (i.e., on the values of the Carlitz-Goss ζ-function at negative integers).File in questo prodotto:
File | Dimensione | Formato | |
---|---|---|---|
ABBL18.pdf
accesso aperto
Descrizione: Articolo post-print
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
269.68 kB
Formato
Adobe PDF
|
269.68 kB | Adobe PDF | Visualizza/Apri |
s00208-019-01875-8.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
641.58 kB
Formato
Adobe PDF
|
641.58 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.