CONTEXT: Mechanisms mediating the cardiovascular and renal protection exerted by SGLT2 inhibitors are still partially unknown. We investigated whether dapagliflozin modulates systemic and renal vascular function and structure, and induces epigenetic modifications. SUBJECTS AND METHODS: Forty hypertensive patients with type 2 diabetes were randomly assigned to 4-week treatment with dapagliflozin 10 mg or hydrochlorothiazide (HCT) 12.5 mg. Routine analyses; plasma renin activity; aldosterone, catecholamine, and 24-hour urinary electrolyte levels; flow-mediated dilation (FMD) of the brachial artery; carotid-femoral pulse-wave velocity (PWV); augmentation index; and resistive index and dynamic renal resistive index (DRIN) were measured at baseline and after treatment. Circulating miRNAs (miRs) related to heart failure (miR30e-5p, miR199a-3p), endothelial dysfunction (miR27b and miR200b), and renal function (miR130b-3p, miR21-5p) were assessed and related to the effects of treatments. RESULTS: Dapagliflozin and HCT marginally lowered blood pressure. Fasting glucose was lowered, whereas 24-hour diuresis, glycosuria, and osmolar clearance were increased by dapagliflozin (P < 0.001 for all), without affecting sodium excretion and glomerular filtration rate. Magnesium levels significantly increased after dapagliflozin treatment (P = 0.02). Neither dapagliflozin nor HCT modified FMD or PWV. DRIN did not vary in the dapagliflozin group, whereas it increased in the HCT group (P = 0.047 for time by treatment interaction). Both treatments induced variations in the expression of some miRs; dapagliflozin, but not HCT, significantly up-regulated miR30e-5p and downregulated miR199a-3p. CONCLUSION: A putative epigenetic regulation of the protecting cardiovascular effect exerted by SGLT2 inhibitors was found. Dapagliflozin might exert nephroprotection by preserving renal vasodilating capacity.

The Effects of Dapagliflozin on Systemic and Renal Vascular Function Display an Epigenetic Signature

Solini, Anna
;
Seghieri, Marta;Giannini, Livia;Biancalana, Edoardo;Parolini, Federico;Rossi, Chiara;Dardano, Angela;Taddei, Stefano;Ghiadoni, Lorenzo;Bruno, Rosa Maria
2019-01-01

Abstract

CONTEXT: Mechanisms mediating the cardiovascular and renal protection exerted by SGLT2 inhibitors are still partially unknown. We investigated whether dapagliflozin modulates systemic and renal vascular function and structure, and induces epigenetic modifications. SUBJECTS AND METHODS: Forty hypertensive patients with type 2 diabetes were randomly assigned to 4-week treatment with dapagliflozin 10 mg or hydrochlorothiazide (HCT) 12.5 mg. Routine analyses; plasma renin activity; aldosterone, catecholamine, and 24-hour urinary electrolyte levels; flow-mediated dilation (FMD) of the brachial artery; carotid-femoral pulse-wave velocity (PWV); augmentation index; and resistive index and dynamic renal resistive index (DRIN) were measured at baseline and after treatment. Circulating miRNAs (miRs) related to heart failure (miR30e-5p, miR199a-3p), endothelial dysfunction (miR27b and miR200b), and renal function (miR130b-3p, miR21-5p) were assessed and related to the effects of treatments. RESULTS: Dapagliflozin and HCT marginally lowered blood pressure. Fasting glucose was lowered, whereas 24-hour diuresis, glycosuria, and osmolar clearance were increased by dapagliflozin (P < 0.001 for all), without affecting sodium excretion and glomerular filtration rate. Magnesium levels significantly increased after dapagliflozin treatment (P = 0.02). Neither dapagliflozin nor HCT modified FMD or PWV. DRIN did not vary in the dapagliflozin group, whereas it increased in the HCT group (P = 0.047 for time by treatment interaction). Both treatments induced variations in the expression of some miRs; dapagliflozin, but not HCT, significantly up-regulated miR30e-5p and downregulated miR199a-3p. CONCLUSION: A putative epigenetic regulation of the protecting cardiovascular effect exerted by SGLT2 inhibitors was found. Dapagliflozin might exert nephroprotection by preserving renal vasodilating capacity.
2019
Solini, Anna; Seghieri, Marta; Giannini, Livia; Biancalana, Edoardo; Parolini, Federico; Rossi, Chiara; Dardano, Angela; Taddei, Stefano; Ghiadoni, Lorenzo; Bruno, Rosa Maria
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1023460
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 29
  • Scopus 63
  • ???jsp.display-item.citation.isi??? 58
social impact