In [ arXiv:1711.07391 ] we have defined quantum groups $mathbf{U}_\upsilon(mathfrak{sl}(mathbb{R}))$ and $mathbf{U}_\upsilon(mathfrak{sl}(S^1))$, which can be interpreted as continuous generalizations of the quantum groups of the Kac-Moody Lie algebras of finite, respectively affine type $A$. In the present paper, we define the Fock space representation $mathcal{F}_{mathbb{R}}$ of the quantum group $mathbf{U}_\upsilon(mathfrak{sl}(mathbb{R}))$ as the vector space generated by real pyramids (a continuous generalization of the notion of partition). In addition, by using a variant of the "folding procedure" of Hayashi-Misra-Miwa, we define an action of $mathbf{U}_\upsilon(mathfrak{sl}(S^1))$ on $mathcal{F}_{mathbb{R}}$.
Fock Space Representation of the Circle Quantum Group
Sala, Francesco
;
2021-01-01
Abstract
In [ arXiv:1711.07391 ] we have defined quantum groups $mathbf{U}_\upsilon(mathfrak{sl}(mathbb{R}))$ and $mathbf{U}_\upsilon(mathfrak{sl}(S^1))$, which can be interpreted as continuous generalizations of the quantum groups of the Kac-Moody Lie algebras of finite, respectively affine type $A$. In the present paper, we define the Fock space representation $mathcal{F}_{mathbb{R}}$ of the quantum group $mathbf{U}_\upsilon(mathfrak{sl}(mathbb{R}))$ as the vector space generated by real pyramids (a continuous generalization of the notion of partition). In addition, by using a variant of the "folding procedure" of Hayashi-Misra-Miwa, we define an action of $mathbf{U}_\upsilon(mathfrak{sl}(S^1))$ on $mathcal{F}_{mathbb{R}}$.| File | Dimensione | Formato | |
|---|---|---|---|
|
SALA_Schiffmann_Fock Space Representation of the Circle Quantum Group_International Mathematics Research Notices_2019.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
822.61 kB
Formato
Adobe PDF
|
822.61 kB | Adobe PDF | Visualizza/Apri Richiedi una copia |
|
1903.02813v2.pdf
accesso aperto
Tipologia:
Documento in Post-print
Licenza:
Tutti i diritti riservati (All rights reserved)
Dimensione
350.12 kB
Formato
Adobe PDF
|
350.12 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


