The enormous number of neurons and the massive sum of connecting fibers linking them make the neural processes of encoding sensory signals extraordinarily complex, and this challenge is far from being elucidated. Simply stated, for the present paper, the question is — how does the brain encode complex images? Our proposal argues that modulation of strengths of functional relationships between firing neurons in relation to an input results in the formation of stimulus-salient functional connectomes. This type of connection/coupling strength is computed by performing cross correlograms (CCG) of spike trains between simultaneously firing cells. Significantly, the strength is dependent upon stimuli characteristics, inferring that cells may join or leave particular ensembles, thus creating signature emergent connectomes for different images, thereby, allowing their discrimination. We observed in an ensemble that functionally connected cells exhibited synergistic excitatory activity, increased coherence, and augmented gamma oscillations within a window-of-opportunity contrasting with unconnected neighboring neuronal companions. We suggest that investigating and revealing such stimulus-salient emergent connectomes is a realistic and promising pursuit toward answering how the brain processes complex images.

The function of connectomes in encoding sensory stimuli

Maya-Vetencourt J. F.
Ultimo
2019-01-01

Abstract

The enormous number of neurons and the massive sum of connecting fibers linking them make the neural processes of encoding sensory signals extraordinarily complex, and this challenge is far from being elucidated. Simply stated, for the present paper, the question is — how does the brain encode complex images? Our proposal argues that modulation of strengths of functional relationships between firing neurons in relation to an input results in the formation of stimulus-salient functional connectomes. This type of connection/coupling strength is computed by performing cross correlograms (CCG) of spike trains between simultaneously firing cells. Significantly, the strength is dependent upon stimuli characteristics, inferring that cells may join or leave particular ensembles, thus creating signature emergent connectomes for different images, thereby, allowing their discrimination. We observed in an ensemble that functionally connected cells exhibited synergistic excitatory activity, increased coherence, and augmented gamma oscillations within a window-of-opportunity contrasting with unconnected neighboring neuronal companions. We suggest that investigating and revealing such stimulus-salient emergent connectomes is a realistic and promising pursuit toward answering how the brain processes complex images.
2019
Molotchnikoff, S.; Bharmauria, V.; Bachatene, L.; Chanauria, N.; Maya-Vetencourt, J. F.
File in questo prodotto:
File Dimensione Formato  
Prog Neurobiol 181 (2019) 101659.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 903.77 kB
Formato Adobe PDF
903.77 kB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1026826
Citazioni
  • ???jsp.display-item.citation.pmc??? 0
  • Scopus 1
  • ???jsp.display-item.citation.isi??? 1
social impact