The result of a search for the pair production of the lightest supersymmetric partner of the bottom quark (b˜ 1) using 139 fb−1 of proton-proton data collected at s = 13 TeV by the ATLAS detector is reported. In the supersymmetric scenarios considered both of the bottom-squarks decay into a b-quark and the second-lightest neutralino, b˜1→b+χ˜20. Each χ˜20 is assumed to subsequently decay with 100% branching ratio into a Higgs boson (h) like the one in the Standard Model and the lightest neutralino: χ˜20→h+χ˜10. The χ˜10 is assumed to be the lightest supersymmetric particle (LSP) and is stable. Two signal mass configurations are targeted: the first has a constant LSP mass of 60 GeV; and the second has a constant mass difference between the χ˜20 and χ˜10 of 130 GeV. The final states considered contain no charged leptons, three or more b-jets, and large missing transverse momentum. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered. Limits at the 95% confidence level are placed in the supersymmetric models considered, and bottom-squarks with mass up to 1.5 TeV are excluded. [Figure not available: see fulltext.]

Search for bottom-squark pair production with the ATLAS detector in final states containing Higgs bosons, b-jets and missing transverse momentum

Calvetti M.;Cavasinni V.;Di Gregorio G.;Francavilla P.;Roda C.;Verducci M.;
2019-01-01

Abstract

The result of a search for the pair production of the lightest supersymmetric partner of the bottom quark (b˜ 1) using 139 fb−1 of proton-proton data collected at s = 13 TeV by the ATLAS detector is reported. In the supersymmetric scenarios considered both of the bottom-squarks decay into a b-quark and the second-lightest neutralino, b˜1→b+χ˜20. Each χ˜20 is assumed to subsequently decay with 100% branching ratio into a Higgs boson (h) like the one in the Standard Model and the lightest neutralino: χ˜20→h+χ˜10. The χ˜10 is assumed to be the lightest supersymmetric particle (LSP) and is stable. Two signal mass configurations are targeted: the first has a constant LSP mass of 60 GeV; and the second has a constant mass difference between the χ˜20 and χ˜10 of 130 GeV. The final states considered contain no charged leptons, three or more b-jets, and large missing transverse momentum. No significant excess of events over the Standard Model background expectation is observed in any of the signal regions considered. Limits at the 95% confidence level are placed in the supersymmetric models considered, and bottom-squarks with mass up to 1.5 TeV are excluded. [Figure not available: see fulltext.]
2019
Aad, G.; Abbott, B.; Abbott, D. C.; Abdinov, O.; Abed Abud, A.; Abeling, K.; Abhayasinghe, D. K.; Abidi, S. H.; Abouzeid, O. S.; Abraham, N. L.; Abram...espandi
File in questo prodotto:
File Dimensione Formato  
Aad2019_Article_SearchForBottom-squarkPairProd.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 957.81 kB
Formato Adobe PDF
957.81 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1026959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 44
  • ???jsp.display-item.citation.isi??? 50
social impact