A model system for the electrochemical investigation of vectorial electron transfer in biological systems was designed, assembled and characterized. Gold electrodes, functionalized with a - OCH3 terminated, aromatic self-assembled monolayer, were used as a substrate for the adsorption of variants of copper-containing, redox metalloprotein azurin. The engineered azurin bears a polyhistidine tag at its C-terminus. Thanks to the presence of the solvent exposed tag, which chelates Cu2+ ions in solution, we introduced an exogenous redox centre. The different reduction potentials of the two redox centres and their positioning with respect to the surface are such that electron transfer from the exogenous copper centre and the electrode is mediated by the native azurin active site, closely paralleling electron transfer processes in naturally occurring multicentre metalloproteins.

Surface Immobilized His-tagged Azurin as a Model Interface for the Investigation of Vectorial Electron Transfer in Biological Systems

Operamolla Alessandra;
2015-01-01

Abstract

A model system for the electrochemical investigation of vectorial electron transfer in biological systems was designed, assembled and characterized. Gold electrodes, functionalized with a - OCH3 terminated, aromatic self-assembled monolayer, were used as a substrate for the adsorption of variants of copper-containing, redox metalloprotein azurin. The engineered azurin bears a polyhistidine tag at its C-terminus. Thanks to the presence of the solvent exposed tag, which chelates Cu2+ ions in solution, we introduced an exogenous redox centre. The different reduction potentials of the two redox centres and their positioning with respect to the surface are such that electron transfer from the exogenous copper centre and the electrode is mediated by the native azurin active site, closely paralleling electron transfer processes in naturally occurring multicentre metalloproteins.
2015
Casalini, Stefano; Berto, Marcello; Kovtun, Alessandro; Operamolla, Alessandra; Di Rocco, Giulia; Facci, Paolo; Liscio, Andrea; Farinola Gianluca, Maria; Borsari, Marco; Bortolotti Carlo, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1027879
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact