Bottom-Up Hidden Tree Markov Model is a highly expressive model for tree-structured data. Unfortunately, it cannot be used in practice due to the intractable size of its state-transition matrix. We propose a new approximation which lies on the Tucker factorisation of tensors. The probabilistic interpretation of such approximation allows us to define a new probabilistic model for tree-structured data. Hence, we define the new approximated model and we derive its learning algorithm. Then, we empirically assess the effective power of the new model evaluating it on two different tasks. In both cases, our model outperforms the other approximated model known in the literature.
Bayesian Tensor Factorisation for Bottom-up Hidden Tree Markov Models
Castellana D.;Bacciu D.
2019-01-01
Abstract
Bottom-Up Hidden Tree Markov Model is a highly expressive model for tree-structured data. Unfortunately, it cannot be used in practice due to the intractable size of its state-transition matrix. We propose a new approximation which lies on the Tucker factorisation of tensors. The probabilistic interpretation of such approximation allows us to define a new probabilistic model for tree-structured data. Hence, we define the new approximated model and we derive its learning algorithm. Then, we empirically assess the effective power of the new model evaluating it on two different tasks. In both cases, our model outperforms the other approximated model known in the literature.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.