In synthetic aperture radar (SAR) remote sensing, Differential Tomography (Diff-Tomo) is developing as a powerful crossing of the mature Differential SAR Interferometry and the emerged 3D SAR Tomography. Diff-Tomo produces advanced 4D (3D+Time) SAR imaging capabilities, extensively applied to urban deformation monitoring. More recently, it has been shown that, through Diff-Tomo, identifying temporal spectra of multiple height-distributed decorrelating scatterers, the important decorrelation-robust forest Tomography functionality is possible. To loosen application constraints of the related main experimented full model-based processing, and develop other functionalities, this work presents an adaptive, just semi-parametric, generalized-Capon Diff-Tomo method, first conceived at University of Pisa in 2013, for joint extraction of height and dynamical information of natural distributed (volumetric) scatterers, with its formalization and a series of insights. Particular reference is given to the important functionality of the separation of different decorrelation mechanisms in forest layers. Representative simulated and P-band forest data sample results are also shown. The new Diff-Tomo method is getting a flexible and rich decorrelation-robust Tomography functionality, and is able to profile height-varying temporal decorrelation, for significantly distributed scatterers.

Generalized-Capon method for Diff-Tomo SAR analyses of decorrelating scatterers

Lombardini F.
Primo
;
2019-01-01

Abstract

In synthetic aperture radar (SAR) remote sensing, Differential Tomography (Diff-Tomo) is developing as a powerful crossing of the mature Differential SAR Interferometry and the emerged 3D SAR Tomography. Diff-Tomo produces advanced 4D (3D+Time) SAR imaging capabilities, extensively applied to urban deformation monitoring. More recently, it has been shown that, through Diff-Tomo, identifying temporal spectra of multiple height-distributed decorrelating scatterers, the important decorrelation-robust forest Tomography functionality is possible. To loosen application constraints of the related main experimented full model-based processing, and develop other functionalities, this work presents an adaptive, just semi-parametric, generalized-Capon Diff-Tomo method, first conceived at University of Pisa in 2013, for joint extraction of height and dynamical information of natural distributed (volumetric) scatterers, with its formalization and a series of insights. Particular reference is given to the important functionality of the separation of different decorrelation mechanisms in forest layers. Representative simulated and P-band forest data sample results are also shown. The new Diff-Tomo method is getting a flexible and rich decorrelation-robust Tomography functionality, and is able to profile height-varying temporal decorrelation, for significantly distributed scatterers.
2019
Lombardini, F.; Cai, F.
File in questo prodotto:
File Dimensione Formato  
remotesensing-425262-proofed - for final.pdf

accesso aperto

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 287.65 kB
Formato Adobe PDF
287.65 kB Adobe PDF Visualizza/Apri
RemoteSensing-11-00412.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 828.17 kB
Formato Adobe PDF
828.17 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1030177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 7
social impact