Since 2018, insects have belonged the category of Novel Foods and the presence of allergens represents one of the main hazards connected to their consumption, also due to the potential cross-reactivity with Arthropoda pan-allergens. In the present work, the allergenicity assessment of black soldier fly and lesser mealworm was performed with a shotgun bottom-up proteomic approach combined with in-silico assessment, followed by IgG- and IgE-immunoblotting experiments. The peptides identified, filtered for their abundance and robustness, belonged mainly to muscle proteins, which represented the most abundant protein group. The relevant potential allergens were in-silico identified by sequence similarity to known allergens, and among them tropomyosin resulted the most abundant insect allergen. IgG-immunoblotting analysis with anti-Tropomyosin I antibodies and IgE-immunoblotting assay with serum from patient allergic to crustacean tropomyosin were performed in order to assess the immunoreactivity in both insects. The immunoassays were carried out also on protein hydrolysates extracted by treating insects with Protease from Bacillus licheniformis (1%, 60 °C, pH 7.5). While IgG-immunoblotting demonstrated the loss of immunoreactivity for both hydrolysates, IgE-immunoblotting showed a partial immunoreactivity preservation, also after hydrolysis, in the case of black soldier fly hydrolysate, and a total loss of immunoreactivity for lesser mealworm hydrolysate

Shotgun proteomics, in-silico evaluation and immunoblotting assays for allergenicity assessment of lesser mealworm, black soldier fly and their protein hydrolysates.

Federico Pratesi;Ilaria Puxeddu;Paola Migliorini;
2020-01-01

Abstract

Since 2018, insects have belonged the category of Novel Foods and the presence of allergens represents one of the main hazards connected to their consumption, also due to the potential cross-reactivity with Arthropoda pan-allergens. In the present work, the allergenicity assessment of black soldier fly and lesser mealworm was performed with a shotgun bottom-up proteomic approach combined with in-silico assessment, followed by IgG- and IgE-immunoblotting experiments. The peptides identified, filtered for their abundance and robustness, belonged mainly to muscle proteins, which represented the most abundant protein group. The relevant potential allergens were in-silico identified by sequence similarity to known allergens, and among them tropomyosin resulted the most abundant insect allergen. IgG-immunoblotting analysis with anti-Tropomyosin I antibodies and IgE-immunoblotting assay with serum from patient allergic to crustacean tropomyosin were performed in order to assess the immunoreactivity in both insects. The immunoassays were carried out also on protein hydrolysates extracted by treating insects with Protease from Bacillus licheniformis (1%, 60 °C, pH 7.5). While IgG-immunoblotting demonstrated the loss of immunoreactivity for both hydrolysates, IgE-immunoblotting showed a partial immunoreactivity preservation, also after hydrolysis, in the case of black soldier fly hydrolysate, and a total loss of immunoreactivity for lesser mealworm hydrolysate
2020
Leni, Giulia; Tedeschi, Tullia; Faccini, Andrea; Pratesi, Federico; Folli, Claudia; Puxeddu, Ilaria; Migliorini, Paola; Gianotten, Natasja; Jacobs, Johan; Depraetere, Stefaan; Caligiani &, Augusta; Sforza, Stefano
File in questo prodotto:
File Dimensione Formato  
s41598-020-57863-5.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.19 MB
Formato Adobe PDF
1.19 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1030233
Citazioni
  • ???jsp.display-item.citation.pmc??? 20
  • Scopus 35
  • ???jsp.display-item.citation.isi??? 29
social impact