DarkSide is direct-detection dark-matter experimental project based on radiopure argon. The main goal of the DarkSide program is the detection of rare nuclear elastic collisions with hypothetical dark-matter particles. The present detector, DarkSide-50, placed at Laboratori Nazionali del Gran Sasso (LNGS), is a dualphase time projection chamber (TPC) filled with ultra-pure liquid argon, extracted from underground sources. Surrounding the TPC to suppress the background there are neutron and muon active vetoes. One of argon key features is the capability to distinguish between electron and nuclear recoils, exploiting the different shapes of the signals. DarkSide-50 new results, obtained using a live-days exposure of 532.4 days, are presented. This analysis sets a 90% C.L. upper limit on the dark matternucleon spin-independent cross-section of 1.1 × 10-44 cm2 for a WIMP mass of 100 GeV/c2. The next phase of the project, DarkSide-20k, will be a new detector with a fiducial mass of ∼ 20 tons, equipped with cryogenic silicon photomultipliers (SiPM).

DarkSide: Latest results and future perspectives

Batignani G.;Morrocchi M.;Paoloni E.;Stracka S.;Verducci M.;
2019-01-01

Abstract

DarkSide is direct-detection dark-matter experimental project based on radiopure argon. The main goal of the DarkSide program is the detection of rare nuclear elastic collisions with hypothetical dark-matter particles. The present detector, DarkSide-50, placed at Laboratori Nazionali del Gran Sasso (LNGS), is a dualphase time projection chamber (TPC) filled with ultra-pure liquid argon, extracted from underground sources. Surrounding the TPC to suppress the background there are neutron and muon active vetoes. One of argon key features is the capability to distinguish between electron and nuclear recoils, exploiting the different shapes of the signals. DarkSide-50 new results, obtained using a live-days exposure of 532.4 days, are presented. This analysis sets a 90% C.L. upper limit on the dark matternucleon spin-independent cross-section of 1.1 × 10-44 cm2 for a WIMP mass of 100 GeV/c2. The next phase of the project, DarkSide-20k, will be a new detector with a fiducial mass of ∼ 20 tons, equipped with cryogenic silicon photomultipliers (SiPM).
2019
Bottino, B.; Agnes, P.; Albuquerque, I. F. M.; Alexander, T.; Alton, A. K.; Asner, D. M.; Ave, Mp.; Back, H. O.; Batignani, G.; Biery, K.; Bocci, V.; Bonfini, G.; Bonivento, W.; Bussino, S.; Cadeddu, M.; Cadoni, M.; Calaprice, F.; Caminata, A.; Canci, N.; Candela, A.; Caravati, M.; Cardenas, M. M.; Cariello, M.; Carlini, M.; Carpinelli, M.; Catalanotti, S.; Cataudella, V.; Cavalcante, P.; Cavuoti, S.; Chepurnov, A.; Cicalo, C.; Cifarelli, L.; Cocco, A. G.; Covone, G.; D'Angelo, D.; D'Incecco, M.; D'Urso, D.; Davini, S.; De Candia, A.; De Cecco, S.; De Deo, M.; De Filippis, G.; De Rosa, G.; De Vincenzi, M.; Derbin, A. V.; Devoto, A.; Di Eusanio, F.; Di Pietro, G.; Dionisi, C.; Edkins, E.; Empl, A.; Fan, A.; Fiorillo, G.; Fomenko, K.; Franco, D.; Gabriele, F.; Galbiati, C.; Garcia Abia, P.; Ghiano, C.; Giagu, S.; Giganti, C.; Giovanetti, G. K.; Gorchakov, O.; Goretti, A. M.; Granato, F.; Gromov, M.; Guan, M.; Guardincerri, Y.; Gulino, M.; Hackett, B. R.; Herner, K.; Hosseini, B.; Hughes, D.; Humble, P.; Hungerford, E. V.; Ianni, An.; Ippolito, V.; James, I.; Johnson, T. N.; Keeter, K.; Kendziora, C. L.; Kochanek, I.; Koh, G.; Korablev, D.; Korga, G.; Kubankin, A.; Kuss, M.; La Commara, M.; Lai, M.; Li, X.; Lissia, M.; Longo, G.; Machado, A. A.; Machulin, I. N.; Mandarano, A.; Mapelli, L.; Mari, S. M.; Maricic, J.; Martoff, C. J.; Messina, A.; Meyers, P. D.; Milincic, R.; Monte, A.; Morrocchi, M.; Mount, B. J.; Muratova, V. N.; Musico, P.; Nania, R.; Navrer Agasson, A.; Nozdrina, A. O.; Oleinik, A.; Orsini, M.; Ortica, F.; Pagani, L.; Pallavicini, M.; Pandola, L.; Pantic, E.; Paoloni, E.; Pelczar, K.; Pelliccia, N.; Pesudo, V.; Pocar, A.; Pordes, S.; Poudel, S. S.; Pugachev, D. A.; Qian, H.; Ragusa, F.; Razeti, M.; Razeto, A.; Renshaw, A. L.; Rescigno, M.; Riffard, Q.; Romani, A.; Rossi, B.; Rossi, N.; Sablone, D.; Samoylov, O.; Sands, W.; Sanfilippo, S.; Santorelli, R.; Savarese, C.; Scapparone, E.; Schlitzer, B.; Segreto, E.; Semenov, D. A.; Shchagin, A.; Sheshukov, A.; Simeone, M.; Singh, P. N.; Skorokhvatov, M. D.; Smirnov, O.; Sotnikov, A.; Stanford, C.; Stracka, S.; Suvorov, Y.; Tartaglia, R.; Testera, G.; Tonazzo, A.; Trinchese, P.; Unzhakov, E. V.; Verducci, M.; Vishneva, A.; Vogelaar, B.; Wada, M.; Waldrop, T. J.; Wang, H.; Wang, Y.; Watson, A. W.; Westerdale, S.; Wojcik, M. M.; Xiang, X.; Xiao, X.; Yang, C.; Ye, Z.; Zhu, C.; Zuzel, G.
File in questo prodotto:
File Dimensione Formato  
Nuovo Cimento 42_180.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 336.2 kB
Formato Adobe PDF
336.2 kB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1030878
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? 0
social impact