In the present paper, CFD simulations related to the operating conditions considered during the experimental campaign on CIRCE-HERO facility are presented, with the aim of investigating the observed temperature stratification phenomena. Calculations are performed using the commercial codes STAR-CCM+ and ANSYS Fluent adopting a RANS approach; the numerical results and the experimental data are compared. Four distinct experimental tests are investigated also performing sensitivity analyses regarding the boundary conditions. In particular, assumptions concerning the heat losses distribution and the shape of the pool inlet were taken into account. The numerical results provide support for further understanding of the involved phenomena, suggesting the possible causes of the thermal stratification observed experimentally inside the pool. Similar trends for the predicted and experimental data were obtained and – even from a quantitative point of view - the observed discrepancies can be considered acceptable, assuming the uncertainties in the experimental boundary conditions and measurement.
Analysis of thermal stratification phenomena in the CIRCE-HERO facility
Buzzi F.Writing – Review & Editing
;Pucciarelli A.
Writing – Review & Editing
;Galleni F.Writing – Review & Editing
;Forgione N.Writing – Review & Editing
2020-01-01
Abstract
In the present paper, CFD simulations related to the operating conditions considered during the experimental campaign on CIRCE-HERO facility are presented, with the aim of investigating the observed temperature stratification phenomena. Calculations are performed using the commercial codes STAR-CCM+ and ANSYS Fluent adopting a RANS approach; the numerical results and the experimental data are compared. Four distinct experimental tests are investigated also performing sensitivity analyses regarding the boundary conditions. In particular, assumptions concerning the heat losses distribution and the shape of the pool inlet were taken into account. The numerical results provide support for further understanding of the involved phenomena, suggesting the possible causes of the thermal stratification observed experimentally inside the pool. Similar trends for the predicted and experimental data were obtained and – even from a quantitative point of view - the observed discrepancies can be considered acceptable, assuming the uncertainties in the experimental boundary conditions and measurement.File | Dimensione | Formato | |
---|---|---|---|
PrePrint Buzzi et al Stratification.pdf
accesso aperto
Tipologia:
Documento in Pre-print
Licenza:
Creative commons
Dimensione
1.31 MB
Formato
Adobe PDF
|
1.31 MB | Adobe PDF | Visualizza/Apri |
Thermal stratification phenomena.pdf
non disponibili
Tipologia:
Versione finale editoriale
Licenza:
NON PUBBLICO - accesso privato/ristretto
Dimensione
4.26 MB
Formato
Adobe PDF
|
4.26 MB | Adobe PDF | Visualizza/Apri Richiedi una copia |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.