The probability of pressurized flow conditions occurring in existing bridges is forecast to increase due to possible changes in extreme precipitation, storm surges, and flooding predicted under climate change scenarios. The presence of a pressure flow is generally associated with scouring processes in proximity to the bridge. Scouring can also occur around bridge piers, possibly causing infrastructure failure. Although there is a vast literature on bridge pier scour and pressure flow scour, only a few studies have investigated their combined effect. This study will provide a new overview of the main features of bridge pier scour under pressurized flow conditions, based on laboratory experiences. Special focus is placed on the analysis of the flow features under pressure and free surface conditions and to the temporal evolution of the scour. A comparison with existing literature data is also conducted. The results highlight the nonlinear nature of scour processes and the need to consider pressurized flow conditions during structural design, as the interaction between pressure flow and the bridge pier strongly influences scour features and leads to scour depths much greater than the sum of the individual scours created only by pressure flow or pier presence.

Bridge pier scour under pressure flow conditions

Pagliara S.;
2019-01-01

Abstract

The probability of pressurized flow conditions occurring in existing bridges is forecast to increase due to possible changes in extreme precipitation, storm surges, and flooding predicted under climate change scenarios. The presence of a pressure flow is generally associated with scouring processes in proximity to the bridge. Scouring can also occur around bridge piers, possibly causing infrastructure failure. Although there is a vast literature on bridge pier scour and pressure flow scour, only a few studies have investigated their combined effect. This study will provide a new overview of the main features of bridge pier scour under pressurized flow conditions, based on laboratory experiences. Special focus is placed on the analysis of the flow features under pressure and free surface conditions and to the temporal evolution of the scour. A comparison with existing literature data is also conducted. The results highlight the nonlinear nature of scour processes and the need to consider pressurized flow conditions during structural design, as the interaction between pressure flow and the bridge pier strongly influences scour features and leads to scour depths much greater than the sum of the individual scours created only by pressure flow or pier presence.
2019
Carnacina, I.; Pagliara, S.; Leonardi, N.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1032579
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 24
social impact