With the aim to investigate the mechanisms of action of nano plastics (nano PS) on plants, seeds of Allium cepa were germinated for 72 h in the presence of polystyrene nano PS (50 nm size, at concentrations of 0.01, 0.1 and 1 g L−1) and, subsequently, roots were analysed by a multifaceted approach. No effect was induced by any concentration of nano PS on the percentage of seed germination while root growth was inhibited by 0.1 and 1 g L−1 nano PS. Cytological analysis of the root meristems indicated cytotoxicity (reduction of mitotic index) and genotoxicity (induction of cytogenetic anomalies and micronuclei) starting from the lowest dose. Moreover, the biochemical and histochemical analysis of oxidative stress markers gave evidence of stress induction, especially at the highest doses. Damages reported could be due to mechanical surface contact in root external layers, as evidenced by histological localization, and to the internalization of nano PS in different cellular compartments, observed under TEM. The present research underlines the hazardous nature of nano PS, that for their ability to be internalized into crop plants, can enter into different trophic levels of the food chain.

Exploring the interaction between polystyrene nanoplastics and Allium cepa during germination: Internalization in root cells, induction of toxicity and oxidative stress

Spano C.
Co-primo
;
Bottega S.;Ruffini Castiglione M.
Ultimo
2020-01-01

Abstract

With the aim to investigate the mechanisms of action of nano plastics (nano PS) on plants, seeds of Allium cepa were germinated for 72 h in the presence of polystyrene nano PS (50 nm size, at concentrations of 0.01, 0.1 and 1 g L−1) and, subsequently, roots were analysed by a multifaceted approach. No effect was induced by any concentration of nano PS on the percentage of seed germination while root growth was inhibited by 0.1 and 1 g L−1 nano PS. Cytological analysis of the root meristems indicated cytotoxicity (reduction of mitotic index) and genotoxicity (induction of cytogenetic anomalies and micronuclei) starting from the lowest dose. Moreover, the biochemical and histochemical analysis of oxidative stress markers gave evidence of stress induction, especially at the highest doses. Damages reported could be due to mechanical surface contact in root external layers, as evidenced by histological localization, and to the internalization of nano PS in different cellular compartments, observed under TEM. The present research underlines the hazardous nature of nano PS, that for their ability to be internalized into crop plants, can enter into different trophic levels of the food chain.
2020
Giorgetti, L.; Spano, C.; Muccifora, S.; Bottega, S.; Barbieri, F.; Bellani, L.; Ruffini Castiglione, M.
File in questo prodotto:
File Dimensione Formato  
POSTPRINT Nanoplastiche.pdf

Open Access dal 02/04/2022

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 881.31 kB
Formato Adobe PDF
881.31 kB Adobe PDF Visualizza/Apri
Nanoplastiche PPB Def.pdf

solo utenti autorizzati

Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 2.65 MB
Formato Adobe PDF
2.65 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1035293
Citazioni
  • ???jsp.display-item.citation.pmc??? 18
  • Scopus 256
  • ???jsp.display-item.citation.isi??? 209
social impact