We present a method to numerically compute accurate tunnelling rates for a Bose-Einstein condensate which is described by the nonlinear Gross-Pitaevskii equation. Our method is based on a sophisticated real-time integration of the complex-scaled Gross-Pitaevskii equation, and it is capable of finding the stationary eigenvalues for the Wannier-Stark problem. We show that even weak nonlinearities have significant effects in the vicinity of very sensitive resonant tunnelling peaks, which occur in the rates as a function of the Stark field amplitude. The mean-field interaction induces a broadening and a shift of the peaks, and the latter is explained by an analytic perturbation theory.

Tunnelling rates for the nonlinear Wannier-Stark problem

MANNELLA, RICCARDO
2006-01-01

Abstract

We present a method to numerically compute accurate tunnelling rates for a Bose-Einstein condensate which is described by the nonlinear Gross-Pitaevskii equation. Our method is based on a sophisticated real-time integration of the complex-scaled Gross-Pitaevskii equation, and it is capable of finding the stationary eigenvalues for the Wannier-Stark problem. We show that even weak nonlinearities have significant effects in the vicinity of very sensitive resonant tunnelling peaks, which occur in the rates as a function of the Stark field amplitude. The mean-field interaction induces a broadening and a shift of the peaks, and the latter is explained by an analytic perturbation theory.
2006
Wimberger, S; Schiagheck, P; Mannella, Riccardo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/103583
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 28
  • ???jsp.display-item.citation.isi??? 27
social impact