The study of the stability properties of numerical methods leads to considering linear difference equations depending on a complex parameter q. Essentially, the associated characteristic polynomial must have constant type for q ∈ ℂ-. Usually such request is proved with the help of computers. In this paper, by using the fact that the associated polynomials aresolutions of a "Legendre-type" difference equation, a complete analysis is carried out for the class of linear multistep methods having the highest possible order.

One parameter family of linear difference equations and the stability problem for the numerical solution of ODEs

ACETO, LIDIA;
2006-01-01

Abstract

The study of the stability properties of numerical methods leads to considering linear difference equations depending on a complex parameter q. Essentially, the associated characteristic polynomial must have constant type for q ∈ ℂ-. Usually such request is proved with the help of computers. In this paper, by using the fact that the associated polynomials aresolutions of a "Legendre-type" difference equation, a complete analysis is carried out for the class of linear multistep methods having the highest possible order.
2006
Aceto, Lidia; Pandolfi, R; Trigiante, D.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/103772
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact