One of the key tasks in mobility data analysis is the study of the individual mobility of users with reference to their per- sonal locations, i.e. The places or areas where they stop to perform any kind of activities. Correctly discovering such personal locations is therefore a very important problem, which is yet not very well addressed in literature. In this work we propose a robust, efficient, statistically well-founded and parameter-free personal location detection process. The algorithm, called TOSCA (TwO-Steps parameter free Clustering Algorithm), combines two clustering strategies and applies statistical tests to drive the selection of the needed parameters. The proposed solution is tested against a large set of competitors and several datasets, including synthetic and real ones. The empirical results show its ability to auto- matically adapt to different contexts yielding good accuracy and a good efficiency.

TOSCA: TwO-Steps Clustering Algorithm for personal locations detection

Guidotti R.
Primo
;
Trasarti R.
Secondo
;
Nanni M.
Ultimo
2015-01-01

Abstract

One of the key tasks in mobility data analysis is the study of the individual mobility of users with reference to their per- sonal locations, i.e. The places or areas where they stop to perform any kind of activities. Correctly discovering such personal locations is therefore a very important problem, which is yet not very well addressed in literature. In this work we propose a robust, efficient, statistically well-founded and parameter-free personal location detection process. The algorithm, called TOSCA (TwO-Steps parameter free Clustering Algorithm), combines two clustering strategies and applies statistical tests to drive the selection of the needed parameters. The proposed solution is tested against a large set of competitors and several datasets, including synthetic and real ones. The empirical results show its ability to auto- matically adapt to different contexts yielding good accuracy and a good efficiency.
2015
9781450339674
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1039794
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 25
  • ???jsp.display-item.citation.isi??? 21
social impact