Carpooling, i.e. the sharing of vehicles to reach common destinations, is often performed to reduce costs and pollution. Recent works on carpooling and journey planning take into account, besides mobility match, also social aspects and, more generally, non-monetary rewards. In line with this, we present a data-driven methodology for a more enjoyable carpooling. We introduce a measure of enjoyability based on people's interests, social links, and tendency to connect to people with similar or dissimilar interests. We devise a methodology to compute enjoyability from crowd-sourced data, and we show how this can be used on real world datasets to optimize for both mobility and enjoyability. Our methodology was tested on real data from Rome and San Francisco. We compare the results of an optimization model minimizing the number of cars, and a greedy approach maximing the enjoyability. We evaluate them in terms of cars saved, and average enjoyability of the system. We present also the results of a user study, with more than 200 users reporting an interest of 39% in the enjoyable solution. Moreoever, 24% of people declared that sharing the car with interesting people would be the primary motivation for carpooling.

Social or Green? A Data-Driven Approach for More Enjoyable Carpooling

Guidotti R.
Primo
;
2015-01-01

Abstract

Carpooling, i.e. the sharing of vehicles to reach common destinations, is often performed to reduce costs and pollution. Recent works on carpooling and journey planning take into account, besides mobility match, also social aspects and, more generally, non-monetary rewards. In line with this, we present a data-driven methodology for a more enjoyable carpooling. We introduce a measure of enjoyability based on people's interests, social links, and tendency to connect to people with similar or dissimilar interests. We devise a methodology to compute enjoyability from crowd-sourced data, and we show how this can be used on real world datasets to optimize for both mobility and enjoyability. Our methodology was tested on real data from Rome and San Francisco. We compare the results of an optimization model minimizing the number of cars, and a greedy approach maximing the enjoyability. We evaluate them in terms of cars saved, and average enjoyability of the system. We present also the results of a user study, with more than 200 users reporting an interest of 39% in the enjoyable solution. Moreoever, 24% of people declared that sharing the car with interesting people would be the primary motivation for carpooling.
2015
978-1-4673-6596-3
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1039805
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact