Graphene conductive properties have been long exploited in the field of organic photovoltaics and optoelectronics by the scientific community worldwide. We engineered and characterized a hybrid biointerface in which graphene is coupled with photosensitive polymers, and tested its ability to elicit lighttriggered neural activity modulation in primary neurons and blind retina explants. We designed such a graphene-based device by modifying a photoactive P3HT-based retinal interface, previously reported to rescue light sensitivity in blind rodents, with a CVD graphene layer replacing the conductive PEDOT:PSS layer to enhance charge separation. The new graphene-based device was characterized for its electrochemical features and for the ability to photostimulate primary neurons and blind retina explants, while preserving biocompatibility. Light-triggered responses, recorded by patch-clamp in vitro or MEA ex vivo, show a stronger light-transduction efficiency when the neurons are interfaced with the graphene-based device with respect to the PEDOT:PSS-based one. The possibility to ameliorate flexible photo-stimulating devices via the insertion of graphene, paves the way for potential biomedical applications of graphenebased neuronal interfaces in the context of retinal implants.

A hybrid P3HT-Graphene interface for efficient photostimulation of neurons

Maya-Vetencourt, J. F.;
2020-01-01

Abstract

Graphene conductive properties have been long exploited in the field of organic photovoltaics and optoelectronics by the scientific community worldwide. We engineered and characterized a hybrid biointerface in which graphene is coupled with photosensitive polymers, and tested its ability to elicit lighttriggered neural activity modulation in primary neurons and blind retina explants. We designed such a graphene-based device by modifying a photoactive P3HT-based retinal interface, previously reported to rescue light sensitivity in blind rodents, with a CVD graphene layer replacing the conductive PEDOT:PSS layer to enhance charge separation. The new graphene-based device was characterized for its electrochemical features and for the ability to photostimulate primary neurons and blind retina explants, while preserving biocompatibility. Light-triggered responses, recorded by patch-clamp in vitro or MEA ex vivo, show a stronger light-transduction efficiency when the neurons are interfaced with the graphene-based device with respect to the PEDOT:PSS-based one. The possibility to ameliorate flexible photo-stimulating devices via the insertion of graphene, paves the way for potential biomedical applications of graphenebased neuronal interfaces in the context of retinal implants.
2020
Difrancesco, M. L.; Colombo, E.; Papaleo, E. D.; Maya-Vetencourt, J. F.; Manfredi, G.; Lanzani, G.; Benfenati, F.
File in questo prodotto:
File Dimensione Formato  
1-s2.0-S0008622320301895-main.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 2.58 MB
Formato Adobe PDF
2.58 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1040540
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 32
  • ???jsp.display-item.citation.isi??? 31
social impact