The effect of pressure fluctuations and flow confinement on shear stress still represents a challenging problem for hydraulic engineers. Only a few studies investigated such aspects, but they did not focus on jet-driven scour processes in granular bed material. Following a recent theoretical framework, this paper presents a novel analytical procedure to assess the effect of pressure fluctuations on the average shear stress for 2D equilibrium configuration, under steady, black water flow conditions. The analysis of experimental data evidences that published formulas underestimate the maximum shear stress, because of the significant flow confinement and the presence of rotating material in the scour hole. Therefore, based on the hydrodynamic similitude characterizing the jet diffusion in a confined environment, a new shear stress coeffcient and a novel equation are proposed to estimate the maximum shear stress for the tested configuration.

Effect of pressure fluctuations and flow confinement on shear stress in jet-driven scour processes

Palermo Michele
Secondo
2020-01-01

Abstract

The effect of pressure fluctuations and flow confinement on shear stress still represents a challenging problem for hydraulic engineers. Only a few studies investigated such aspects, but they did not focus on jet-driven scour processes in granular bed material. Following a recent theoretical framework, this paper presents a novel analytical procedure to assess the effect of pressure fluctuations on the average shear stress for 2D equilibrium configuration, under steady, black water flow conditions. The analysis of experimental data evidences that published formulas underestimate the maximum shear stress, because of the significant flow confinement and the presence of rotating material in the scour hole. Therefore, based on the hydrodynamic similitude characterizing the jet diffusion in a confined environment, a new shear stress coeffcient and a novel equation are proposed to estimate the maximum shear stress for the tested configuration.
2020
Pagliara, Simone; Palermo, Michele
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1040706
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact