A thorough experimental investigation of a bench-scale apparatus of the proton concentration process with two symmetrical MnO2 electrodes is presented, with the aim of continuous desorption of CO2 from a K2CO3 solution. The electrodes were fabricated through cathodic deposition, and their chemical states, morphology, and microstructural architecture were characterized with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Successful formation of MnO2 film was confirmed by XPS analysis, and the SEM images showed a uniform distribution of the film across the carbon substrate surface and along the strand, with an average thickness of ∼500 nm, thus making proton ion diffusion possible. Continuous and efficient desorption of CO2 from a K2CO3 solution was obtained when electrodeposited MnO2 electrodes were used in a flow-based proton concentration process. The amount of CO2 desorbed per area of the electrode was 12-fold higher than that of a similar system. The electrochemical nature of the proton concentration process offers substantial practical advantages for the future, especially if electricity can be sustainably produced from renewable sources.
Bench-scale demonstration of CO₂ capture with an electrochemically driven proton concentration process
Catalini, Giulia;Puccini, Monica;
2020-01-01
Abstract
A thorough experimental investigation of a bench-scale apparatus of the proton concentration process with two symmetrical MnO2 electrodes is presented, with the aim of continuous desorption of CO2 from a K2CO3 solution. The electrodes were fabricated through cathodic deposition, and their chemical states, morphology, and microstructural architecture were characterized with X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy (SEM). Successful formation of MnO2 film was confirmed by XPS analysis, and the SEM images showed a uniform distribution of the film across the carbon substrate surface and along the strand, with an average thickness of ∼500 nm, thus making proton ion diffusion possible. Continuous and efficient desorption of CO2 from a K2CO3 solution was obtained when electrodeposited MnO2 electrodes were used in a flow-based proton concentration process. The amount of CO2 desorbed per area of the electrode was 12-fold higher than that of a similar system. The electrochemical nature of the proton concentration process offers substantial practical advantages for the future, especially if electricity can be sustainably produced from renewable sources.File | Dimensione | Formato | |
---|---|---|---|
Rahimi_2020.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
1.71 MB
Formato
Adobe PDF
|
1.71 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.