A human health risk assessment was performed to evaluate if a biofilter for the biological methane oxidation reduces the risk from exposure to landfill gas emissions and improves the air quality mitigating odour emissions from an aftercare landfill. Accordingly, three different scenarios of landfill gas management were defined, 9 volatile organic compounds (VOCs) (cyclohexane, n-hexane, 2-methylpentane, 3-methylpentane, benzene, xylenes, toluene, dichlorodifluoromethane, vinyl chloride) were identified and using the CALPUFF dispersion model; the pollutant concentration at eleven sensitive receptors was determined. Consequently, the risk (for cancer and non-cancer compounds) was assessed applying the methodology proposed by USEPA 2009. From one hand, to determine concentration and emission rates of VOCs and hydrogen sulphide, a sample of raw landfill gas and three air samples from the biofilter surface were collected with dynamic flux chamber method and analysed in accordance with US EPA, 1986 and USEPA TO-15, 1999. To the other hand, odour emissions were assessed based both on chemical and dynamic olfactometric measurements (EN 13725:2003). The field surveys results showed a reduction of the cancer risk on average by 79% and of the hazard quotient on average by 92%. In contrast, the results of olfactometry measurements showed a lower efficiency on odour reduction than the target value of 70%. Nonetheless, the odour concentration was always far below 300 uoE m−3 at the biofilter surface and odour concentration never exceed 1 uoE m−3 at the sensitive receptors.

Methane oxidation of residual landfill gas in a full-scale biofilter: human health risk assessment of volatile and malodours compound emissions

Rossi E.;Pecorini I.
;
Iannelli R.
2021-01-01

Abstract

A human health risk assessment was performed to evaluate if a biofilter for the biological methane oxidation reduces the risk from exposure to landfill gas emissions and improves the air quality mitigating odour emissions from an aftercare landfill. Accordingly, three different scenarios of landfill gas management were defined, 9 volatile organic compounds (VOCs) (cyclohexane, n-hexane, 2-methylpentane, 3-methylpentane, benzene, xylenes, toluene, dichlorodifluoromethane, vinyl chloride) were identified and using the CALPUFF dispersion model; the pollutant concentration at eleven sensitive receptors was determined. Consequently, the risk (for cancer and non-cancer compounds) was assessed applying the methodology proposed by USEPA 2009. From one hand, to determine concentration and emission rates of VOCs and hydrogen sulphide, a sample of raw landfill gas and three air samples from the biofilter surface were collected with dynamic flux chamber method and analysed in accordance with US EPA, 1986 and USEPA TO-15, 1999. To the other hand, odour emissions were assessed based both on chemical and dynamic olfactometric measurements (EN 13725:2003). The field surveys results showed a reduction of the cancer risk on average by 79% and of the hazard quotient on average by 92%. In contrast, the results of olfactometry measurements showed a lower efficiency on odour reduction than the target value of 70%. Nonetheless, the odour concentration was always far below 300 uoE m−3 at the biofilter surface and odour concentration never exceed 1 uoE m−3 at the sensitive receptors.
2021
Rossi, E.; Pecorini, I.; Iannelli, R.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1041612
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 10
  • ???jsp.display-item.citation.isi??? 14
social impact