The simplified, manual calibration of commercial Optical See-Through Head-Mounted Displays (OST-HMDs) is neither accurate nor convenient for medical applications. An interaction-free calibration method that can be easily implemented in commercial headsets is thus desired. State-of-the-art automatic calibrations simplify the eye-screen system as a pinhole camera and tedious offline calibrations are required. Furthermore, they have never been tested on original commercial products. We present a gaze-based automatic calibration method that can be easily implemented in commercial headsets without knowing hardware details. The location of the virtual target is revised in world coordinate according to the real-time tracked eye gaze. The algorithm has been tested with the Microsoft HoloLens. Current quantitative and qualitative user studies show that the automatically calibrated display is statistically comparable with the manually calibrated display under both monocular and binocular rendering mode. Since it is cumbersome to ask users to perform manual calibrations every time the HMD is re-positioned, our method provides a comparably accurate but more convenient and practical solution to the HMD calibration.

Automatic Calibration of Commercial Optical See-Through Head-Mounted Displays for Medical Applications

Cutolo, Fabrizio;
2020-01-01

Abstract

The simplified, manual calibration of commercial Optical See-Through Head-Mounted Displays (OST-HMDs) is neither accurate nor convenient for medical applications. An interaction-free calibration method that can be easily implemented in commercial headsets is thus desired. State-of-the-art automatic calibrations simplify the eye-screen system as a pinhole camera and tedious offline calibrations are required. Furthermore, they have never been tested on original commercial products. We present a gaze-based automatic calibration method that can be easily implemented in commercial headsets without knowing hardware details. The location of the virtual target is revised in world coordinate according to the real-time tracked eye gaze. The algorithm has been tested with the Microsoft HoloLens. Current quantitative and qualitative user studies show that the automatically calibrated display is statistically comparable with the manually calibrated display under both monocular and binocular rendering mode. Since it is cumbersome to ask users to perform manual calibrations every time the HMD is re-positioned, our method provides a comparably accurate but more convenient and practical solution to the HMD calibration.
2020
978-1-7281-6532-5
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1041898
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 2
social impact