A series of 4-phenyl-6H-imidazo[1,5-a]thieno[3,2-f][1,4]diazepine-7-carboxylate esters were synthesized and tested as central benzodiazepine receptor (CBR) ligands by the ability to displace [3H]flumazenil from rat cortical membranes. All the compounds showed high affinity with IC50 values ranging from 5.19 to 16.22 nM. In particular, compounds 12b (IC50 = 8.66 nM) and 12d (IC50 = 5.19 nM) appeared as the most effective ligands being their affinity values significantly lower than that of diazepam (IC50 = 18.52 nM). Compounds 12a-f were examined in vivo for their pharmacological effects in mice and five potential benzodiazepine (BDZ) actions were thus taken into consideration: anxiolytic, anticonvulsant, anti-amnesic, hypnotic, and locomotor activities. All the new synthesized compounds were able to induce a significant antianxiety effect and, among them, compound 12f protected pentylenetetrazole (PTZ)-induced convulsions in a dose-dependent manner reaching a 40% effect at 30 mg/kg. In addition, all the compounds were able to significantly prevent the memory impairment evoked by scopolamine, while none of them was able to interfere with pentobarbital-evoked sleep and influence motor coordination. Moreover, title compounds did not affect locomotor and exploratory activity at the same time and doses at which the anti-anxiety effect was observed. Finally, molecular docking simulations were carried out in order to assess the binding mode for compounds 12a-f. The obtained results demonstrated that these compounds bind the BDZ binding site in a similar fashion to flumazenil.

Design, synthesis and biological evaluation of 7-substituted 4-phenyl-6H-imidazo[1,5-a]thieno[3,2-f] [1,4]diazepines as safe anxiolytic agents

Brogi, Simone;
2020-01-01

Abstract

A series of 4-phenyl-6H-imidazo[1,5-a]thieno[3,2-f][1,4]diazepine-7-carboxylate esters were synthesized and tested as central benzodiazepine receptor (CBR) ligands by the ability to displace [3H]flumazenil from rat cortical membranes. All the compounds showed high affinity with IC50 values ranging from 5.19 to 16.22 nM. In particular, compounds 12b (IC50 = 8.66 nM) and 12d (IC50 = 5.19 nM) appeared as the most effective ligands being their affinity values significantly lower than that of diazepam (IC50 = 18.52 nM). Compounds 12a-f were examined in vivo for their pharmacological effects in mice and five potential benzodiazepine (BDZ) actions were thus taken into consideration: anxiolytic, anticonvulsant, anti-amnesic, hypnotic, and locomotor activities. All the new synthesized compounds were able to induce a significant antianxiety effect and, among them, compound 12f protected pentylenetetrazole (PTZ)-induced convulsions in a dose-dependent manner reaching a 40% effect at 30 mg/kg. In addition, all the compounds were able to significantly prevent the memory impairment evoked by scopolamine, while none of them was able to interfere with pentobarbital-evoked sleep and influence motor coordination. Moreover, title compounds did not affect locomotor and exploratory activity at the same time and doses at which the anti-anxiety effect was observed. Finally, molecular docking simulations were carried out in order to assess the binding mode for compounds 12a-f. The obtained results demonstrated that these compounds bind the BDZ binding site in a similar fashion to flumazenil.
2020
Di Capua, Angela; Reale, Annalisa; Paolino, Marco; Chemi, Giulia; Brogi, Simone; Cappelli, Andrea; Giorgi, Gianluca; Grande, Fedora; Di Cesare Mannell...espandi
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1044399
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? 1
  • Scopus 5
  • ???jsp.display-item.citation.isi??? 6
social impact