Various hazards and endemic threats are increasingly looming over cities, leading planners to rely on a rich toolbox of flexible and inclusive planning instruments and methods, capable of dealing with unpredicted events or sudden urban contingencies, when seeking sustainable urban futures. While sustainability-oriented innovative planning approaches are gaining momentum, ways to embed connected concepts in operational planning and design decision support systems have yet to be fully developed and validated. This paper tackles this issue by proposing and testing, in a real-life scenario, a method for the computational analysis of street network resilience, based on Space Syntax theory. The method is suitable to quantify the capacity of urban grids to absorb sudden disturbances and adapt to change, and to offer support for mitigation decisions and their communication to the public. It presents a set of configurational resilience indices, whose reliability is qualitatively assessed considering the ex-ante and ex-post urban configurations generated by two exceptional and dramatic bridge crashes. These events occurred almost simultaneously in two Italian cities with peculiarly similar characteristics. The results confirm the value of the proposal and highlight urban form, and particularly its grid, as a key driver in building urban resilience, together with the self-organisation capacity of local communities.

Street Network Resilience Put to the Test: The Dramatic Crash of Genoa and Bologna Bridges

Cutini V.
;
2020-01-01

Abstract

Various hazards and endemic threats are increasingly looming over cities, leading planners to rely on a rich toolbox of flexible and inclusive planning instruments and methods, capable of dealing with unpredicted events or sudden urban contingencies, when seeking sustainable urban futures. While sustainability-oriented innovative planning approaches are gaining momentum, ways to embed connected concepts in operational planning and design decision support systems have yet to be fully developed and validated. This paper tackles this issue by proposing and testing, in a real-life scenario, a method for the computational analysis of street network resilience, based on Space Syntax theory. The method is suitable to quantify the capacity of urban grids to absorb sudden disturbances and adapt to change, and to offer support for mitigation decisions and their communication to the public. It presents a set of configurational resilience indices, whose reliability is qualitatively assessed considering the ex-ante and ex-post urban configurations generated by two exceptional and dramatic bridge crashes. These events occurred almost simultaneously in two Italian cities with peculiarly similar characteristics. The results confirm the value of the proposal and highlight urban form, and particularly its grid, as a key driver in building urban resilience, together with the self-organisation capacity of local communities.
2020
Cutini, V.; Pezzica, C.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1044920
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact