A new methodology for estimation of the key characteristics of commercial scale Vanadium Redox Flow Battery (VRFB) at different operating conditions is proposed. The method is based on a set of simplified correlations that allow estimating VRFB rated power, capacity and operation time directly from the geometry of stack and tank without detailed numerical simulation of the battery. The study is focused on investigation of a kilo-watt class VRFB system (5 kW/15kWh) considering a wide range of current densities (40–100 mA cm−2). The proposed simplified approach is validated considering the most representative cases of battery operation strategies related to slow and fast modes. It demonstrated high accuracy for the estimation of rated power and operation time (average error below 3%) as well as stored energy (average error below 6%) compare to results of detailed numerical simulation. As a result, the proposed methodology can be used as a simple tool for development of proper battery usage protocol (a schedule for battery usage), which could allow avoiding over/underestimation of committed battery energy and power during battery operation. In addition, the obtained results can be also used in order to improve the accuracy of techno-economic studies determining the most economically attractive cases for application of VRFB systems.

Energy efficiency analysis for a kilo-watt class vanadium redox flow battery system

Bischi A.
2019-01-01

Abstract

A new methodology for estimation of the key characteristics of commercial scale Vanadium Redox Flow Battery (VRFB) at different operating conditions is proposed. The method is based on a set of simplified correlations that allow estimating VRFB rated power, capacity and operation time directly from the geometry of stack and tank without detailed numerical simulation of the battery. The study is focused on investigation of a kilo-watt class VRFB system (5 kW/15kWh) considering a wide range of current densities (40–100 mA cm−2). The proposed simplified approach is validated considering the most representative cases of battery operation strategies related to slow and fast modes. It demonstrated high accuracy for the estimation of rated power and operation time (average error below 3%) as well as stored energy (average error below 6%) compare to results of detailed numerical simulation. As a result, the proposed methodology can be used as a simple tool for development of proper battery usage protocol (a schedule for battery usage), which could allow avoiding over/underestimation of committed battery energy and power during battery operation. In addition, the obtained results can be also used in order to improve the accuracy of techno-economic studies determining the most economically attractive cases for application of VRFB systems.
2019
Pugach, M.; Vyshinsky, V.; Bischi, A.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1045222
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 35
  • ???jsp.display-item.citation.isi??? ND
social impact