Emissions from daily and final covers of municipal solid waste (MSW) landfills can produce significant impacts on local and global environments. Simplifying, landfills can cause local impacts with odor emissions and global impacts with GHGs. This work focuses on hydrogen sulfide (H2S) and methane (CH4) emissions, with the aim of studying how it is possible to reduce their impacts by means of biofiltration systems. Both field and laboratory investigations have been carried out in Casa Rota Landfill (Tuscany, Italy). In the field trials, four pilot-scale biocovers made of compost from a source-selected organic fraction (SS compost), compost from a mechanical biological treatment plant-the residual fractions of the MSW, a mixed compost (SS-MSW compost) and sand were monitored in the daily cover area of the landfill, where high emissions were detected. Results showed that high CH4 and H2S emissions reductions occurred in the mixed SS-MSW compost plot, given a maximum methane oxidation efficiency of greater than 98% and an average oxidation efficiency of about 75%. To assess the specific oxidation rate, laboratory tests using SS-MSW compost sampled from the biocovers were done.
Landfill GHG reduction through different microbial methane oxidation biocovers
Pecorini I.
;Iannelli R.
2020-01-01
Abstract
Emissions from daily and final covers of municipal solid waste (MSW) landfills can produce significant impacts on local and global environments. Simplifying, landfills can cause local impacts with odor emissions and global impacts with GHGs. This work focuses on hydrogen sulfide (H2S) and methane (CH4) emissions, with the aim of studying how it is possible to reduce their impacts by means of biofiltration systems. Both field and laboratory investigations have been carried out in Casa Rota Landfill (Tuscany, Italy). In the field trials, four pilot-scale biocovers made of compost from a source-selected organic fraction (SS compost), compost from a mechanical biological treatment plant-the residual fractions of the MSW, a mixed compost (SS-MSW compost) and sand were monitored in the daily cover area of the landfill, where high emissions were detected. Results showed that high CH4 and H2S emissions reductions occurred in the mixed SS-MSW compost plot, given a maximum methane oxidation efficiency of greater than 98% and an average oxidation efficiency of about 75%. To assess the specific oxidation rate, laboratory tests using SS-MSW compost sampled from the biocovers were done.File | Dimensione | Formato | |
---|---|---|---|
processes-08-00591-v2.pdf
accesso aperto
Tipologia:
Versione finale editoriale
Licenza:
Creative commons
Dimensione
3.27 MB
Formato
Adobe PDF
|
3.27 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.