Background: Oxidative stress (OS) plays a central role in diabetic retinopathy (DR), triggering expression and release of vascular endothelial growth factor (VEGF), the increase of which leads to deleterious vascular changes. We tested the hypothesis that OS-stimulated VEGF induces its own expression with an autocrine mechanism. Methods: MIO-M1 cells and ex vivo mouse retinal explants were treated with OS, with exogenous VEGF or with conditioned media (CM) from OS-stressed cultures. Results: Both in MIO-M1 cells and in retinal explants, OS or exogenous VEGF induced a significant increase of VEGF mRNA, which was abolished by VEGF receptor 2 (VEGFR-2) inhibition. OS also caused VEGF release. In MIO-M1 cells, CM induced VEGF expression, which was abolished by a VEGFR-2 inhibitor. Moreover, the OS-induced increase of VEGF mRNA was abolished by a nuclear factor erythroid 2-related factor 2 (Nrf2) blocker, while the effect of exo-VEGF resulted Nrf2-independent. Finally, both the exo-VEGF- and the OS-induced increase of VEGF expression were blocked by a hypoxia-inducible factor-1 inhibitor. Conclusions: These results are consistent with the existence of a retinal VEGF autocrine loop triggered by OS. This mechanism may significantly contribute to the maintenance of elevated VEGF levels and therefore it may be of central importance for the onset and development of DR.

Oxidative Stress Induces a VEGF Autocrine Loop in the Retina: Relevance for Diabetic Retinopathy

Amato, Rosario;Cammalleri, Maurizio;Monte, Massimo Dal
;
Casini, Giovanni
Ultimo
2020-01-01

Abstract

Background: Oxidative stress (OS) plays a central role in diabetic retinopathy (DR), triggering expression and release of vascular endothelial growth factor (VEGF), the increase of which leads to deleterious vascular changes. We tested the hypothesis that OS-stimulated VEGF induces its own expression with an autocrine mechanism. Methods: MIO-M1 cells and ex vivo mouse retinal explants were treated with OS, with exogenous VEGF or with conditioned media (CM) from OS-stressed cultures. Results: Both in MIO-M1 cells and in retinal explants, OS or exogenous VEGF induced a significant increase of VEGF mRNA, which was abolished by VEGF receptor 2 (VEGFR-2) inhibition. OS also caused VEGF release. In MIO-M1 cells, CM induced VEGF expression, which was abolished by a VEGFR-2 inhibitor. Moreover, the OS-induced increase of VEGF mRNA was abolished by a nuclear factor erythroid 2-related factor 2 (Nrf2) blocker, while the effect of exo-VEGF resulted Nrf2-independent. Finally, both the exo-VEGF- and the OS-induced increase of VEGF expression were blocked by a hypoxia-inducible factor-1 inhibitor. Conclusions: These results are consistent with the existence of a retinal VEGF autocrine loop triggered by OS. This mechanism may significantly contribute to the maintenance of elevated VEGF levels and therefore it may be of central importance for the onset and development of DR.
2020
Rossino, Maria Grazia; Lulli, Matteo; Amato, Rosario; Cammalleri, Maurizio; Monte, Massimo Dal; Casini, Giovanni
File in questo prodotto:
File Dimensione Formato  
2020 - Cells.pdf

accesso aperto

Tipologia: Versione finale editoriale
Licenza: Creative commons
Dimensione 1.08 MB
Formato Adobe PDF
1.08 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1045360
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 30
  • ???jsp.display-item.citation.isi??? 27
social impact