Let (M,g) a compact Riemannian n-dimensional manifold with umbilic boundary. It is well known that, under certain hypothesis, in the conformal class of g there are scalar-flat metrics that have the boundary of M as a constant mean curvature hypersurface. In this paper we prove that these metrics are a compact set, provided n=8 and the Weyl tensor of the boundary is always different from zero, or if n>8 and the Weyl tensor of M is always different from zero on the boundary.

Compactness for conformal scalar-flat metrics on umbilic boundary manifolds

Ghimenti M.
;
Micheletti A. M.
2020-01-01

Abstract

Let (M,g) a compact Riemannian n-dimensional manifold with umbilic boundary. It is well known that, under certain hypothesis, in the conformal class of g there are scalar-flat metrics that have the boundary of M as a constant mean curvature hypersurface. In this paper we prove that these metrics are a compact set, provided n=8 and the Weyl tensor of the boundary is always different from zero, or if n>8 and the Weyl tensor of M is always different from zero on the boundary.
2020
Ghimenti, M.; Micheletti, A. M.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1045698
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 7
social impact