Nowadays, Ion propulsion systems are reliable enough to promise future space systems with high operational efficiencies. Conventionally, to control the thrust vector, ion engines are mounted on gimbals and oriented as a whole. To date, several studies and experiments have been conducted mounting compact thrust-vectoring systems within the thruster itself to reduce overall system mass. In this sense, gridded ion thruster is one of the most reliable propulsion systems with comparably higher operational efficiency, which allows for such vectoring techniques. The use of a microelectromechanical system combined with piezoelectric actuators for this process is promising. The paper presents a study for a possible implementation of these actuators in an Ion-Engine thrust vectoring system. A preliminary application is studied, and a proof of concept model is developed. Finite element analyses carried out in the present research show that the feasibility of the proposed design is demonstrated by adopting the piezoelectric actuation coupled with suitable compliant structures or adopting existing actuators as microelectromechanical piezoelectric systems. The proposed design, in theory, can eliminate the use of existing complex gimbal systems and thereby reduce the overall thrust vectoring system mass considerably.

Use of piezoelectric actuators for thrust vectoring in ion engines: conceptual design and preliminary analysis

JAYAPRAKASH CHALIYATH, ARJUN
Penultimo
Writing – Review & Editing
;
CHIARELLI, MARIO ROSARIO
Writing – Original Draft Preparation
;
DI RITO, GIANPIETRO
Validation
2020-01-01

Abstract

Nowadays, Ion propulsion systems are reliable enough to promise future space systems with high operational efficiencies. Conventionally, to control the thrust vector, ion engines are mounted on gimbals and oriented as a whole. To date, several studies and experiments have been conducted mounting compact thrust-vectoring systems within the thruster itself to reduce overall system mass. In this sense, gridded ion thruster is one of the most reliable propulsion systems with comparably higher operational efficiency, which allows for such vectoring techniques. The use of a microelectromechanical system combined with piezoelectric actuators for this process is promising. The paper presents a study for a possible implementation of these actuators in an Ion-Engine thrust vectoring system. A preliminary application is studied, and a proof of concept model is developed. Finite element analyses carried out in the present research show that the feasibility of the proposed design is demonstrated by adopting the piezoelectric actuation coupled with suitable compliant structures or adopting existing actuators as microelectromechanical piezoelectric systems. The proposed design, in theory, can eliminate the use of existing complex gimbal systems and thereby reduce the overall thrust vectoring system mass considerably.
2020
978-1-7281-6635-3
File in questo prodotto:
File Dimensione Formato  
PAPER MAS2020 - ID #1317 - DODDAHOSAHALLI et alii.pdf

accesso aperto

Descrizione: Articolo Finale Inviato al Comitao Organizzatore del Convegno
Tipologia: Documento in Post-print
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.15 MB
Formato Adobe PDF
1.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1046141
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 3
  • ???jsp.display-item.citation.isi??? 3
social impact