Measurements performed on several graphene samples have shown the presence of a minimum of the flicker noise power spectral density near the charge neutrality point. This behavior is anomalous with respect to what is observed in more usual semi-conductors. Here, we report our explanation for this difference. We simulate the 1/f noise behavior of devices made of graphene and of more common semiconductors, through a model based on the validity of the mass-action law and on the conservation of the charge neutrality. We conclude that the minimum of the flicker noise at the charge neutrality point can be observed only in very clean samples of materials with similar mobilities for electrons and holes.

Model for 1/f Noise in Graphene and in More Common Semiconductors

Paolo-Marconcini
2020-01-01

Abstract

Measurements performed on several graphene samples have shown the presence of a minimum of the flicker noise power spectral density near the charge neutrality point. This behavior is anomalous with respect to what is observed in more usual semi-conductors. Here, we report our explanation for this difference. We simulate the 1/f noise behavior of devices made of graphene and of more common semiconductors, through a model based on the validity of the mass-action law and on the conservation of the charge neutrality. We conclude that the minimum of the flicker noise at the charge neutrality point can be observed only in very clean samples of materials with similar mobilities for electrons and holes.
2020
Marconcini, Paolo
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1046879
 Attenzione

Attenzione! I dati visualizzati non sono stati sottoposti a validazione da parte dell'ateneo

Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact