In this paper we consider elliptic problems with an operator depending only on the deformation tensor. We consider the class of operators derived from a potential and with (p,delta)-structure, for 1<=2 and for all delta>=0. We apply the so called A-approximation method to approximate the operator by another one with linear growth. This allows us to prove the ``natural'' second order regularity (up to the boundary) in the case of homogeneous Dirichlet boundary conditions. Results are not completely new, but the method we apply was not used before in this setting.

Natural second order regularity for systems in the case 1<=2 using the A-approximation

Luigi C. Berselli;
2022-01-01

Abstract

In this paper we consider elliptic problems with an operator depending only on the deformation tensor. We consider the class of operators derived from a potential and with (p,delta)-structure, for 1<=2 and for all delta>=0. We apply the so called A-approximation method to approximate the operator by another one with linear growth. This allows us to prove the ``natural'' second order regularity (up to the boundary) in the case of homogeneous Dirichlet boundary conditions. Results are not completely new, but the method we apply was not used before in this setting.
2022
Berselli, Luigi C.; Ruzicka, Michael
File in questo prodotto:
File Dimensione Formato  
ArXiv-2112.12225.pdf

accesso aperto

Descrizione: preprint
Tipologia: Documento in Pre-print
Licenza: Creative commons
Dimensione 336.1 kB
Formato Adobe PDF
336.1 kB Adobe PDF Visualizza/Apri
Advances-MFSI-2022.pdf

solo utenti autorizzati

Descrizione: Versione finale
Tipologia: Versione finale editoriale
Licenza: NON PUBBLICO - accesso privato/ristretto
Dimensione 20.11 MB
Formato Adobe PDF
20.11 MB Adobe PDF   Visualizza/Apri   Richiedi una copia

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1049620
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact