People involved in mass emergencies increasingly publish information-rich contents in online social networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to ) and the variety (up to ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity

Towards better social crisis data with HERMES: Hybrid sensing for EmeRgency ManagEment System

Marco Avvenuti;Leonardo Nizzoli;
2020-01-01

Abstract

People involved in mass emergencies increasingly publish information-rich contents in online social networks (OSNs), thus acting as a distributed and resilient network of human sensors. In this work we present HERMES, a system designed to enrich the information spontaneously disclosed by OSN users in the aftermath of disasters. HERMES leverages a mixed data collection strategy, called hybrid sensing, and state-of-the-art AI techniques. Evaluated in real-world emergencies, HERMES proved to increase: (i) the amount of the available damage information; (ii) the density (up to ) and the variety (up to ) of the retrieved geographic information; (iii) the geographic coverage (up to 30%) and granularity
2020
Avvenuti, Marco; Bellomo, Salvatore; Cresci, Stefano; Nizzoli, Leonardo; Tesconi, Maurizio
File in questo prodotto:
File Dimensione Formato  
2020-HERMES-PMC.pdf

non disponibili

Tipologia: Versione finale editoriale
Licenza: Tutti i diritti riservati (All rights reserved)
Dimensione 1.81 MB
Formato Adobe PDF
1.81 MB Adobe PDF   Visualizza/Apri   Richiedi una copia
2020-HERMES-postprint.pdf

Open Access dal 26/07/2022

Tipologia: Documento in Post-print
Licenza: Creative commons
Dimensione 2.47 MB
Formato Adobe PDF
2.47 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/11568/1050021
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact